
Netcool/OMNIbus
Version 7 Release 4

Probe and Gateway Guide

SC14-7530-02

���

Netcool/OMNIbus
Version 7 Release 4

Probe and Gateway Guide

SC14-7530-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 251.

This edition applies to version 7, release 4 of IBM Tivoli Netcool/OMNIbus (product number 5724-S44) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
Intended audience v
What this publication contains v
Publications vi
Accessibility viii
Tivoli technical training viii
Support information viii
Conventions used in this publication viii

Chapter 1. About probes 1
Probe registration. 2
Types of probes 2

Device probes 3
Log file probes. 3
Database probes 3
API probes 4
CORBA probes 4
Miscellaneous probes 4

Probe components 5
Executable file 5
Properties file 5
Rules file 7
Naming conventions for probe component files . . 8

Probe architecture 9
How unique identifiers are constructed for events 10
Modes of operation of probes 11

Store-and-forward mode for probes 11
Raw capture mode for probes 14
Secure mode for probes 15
Peer-to-peer failover mode for probes 16

Chapter 2. Probe rules file syntax . . . 19
Rules file development guidelines 19
Elements, fields, properties, and arrays in rules files 20

Assigning values to ObjectServer fields 21
Assigning temporary elements in rules files . . 21
Assigning property values to fields 22
Assigning values to properties 22
Using arrays 23

Control statements in rules files 23
FOREACH statement 24
IF statement 28
SWITCH statement 29
BREAK statement 30

Embedding multiple rules files in a rules file . . . 30
Rules file functions and operators 30

Math and string operators 33
Bit manipulation operators 34
Comparison operators 35
Logical operators 35
Existence function 35
Elements and event functions 36
String functions 36
Math functions 40
Date and time functions 41

Host and process utility functions 42
Lookup table operations 43
Update on deduplication function 45
Details function 45
Message logging functions 46
Sending alerts to alternative ObjectServers and
tables 47
Search and replace function 53
Service function 54
Monitoring probe loads 55
Reserved words in the probe rules language . . 56

Testing rules files 58
Debugging rules files 59
Rereading the rules file 60
Enabling caching of probe rules files 61
Rules file examples 63

Chapter 3. Probe rules file
customizations 67
Detecting event floods and anomalous event rates 67

Configuring probes to detect event floods and
anomalous event rates 68
Protecting the ObjectServer against event floods 70
Flood configuration rules file 71
Flood rules file 74

Enabling self monitoring of probes 76
Configuration setup for self monitoring of probes 77
Tivoli Netcool/OMNIbus configuration files for
the self monitoring of probes 79
Configuring probes for self monitoring 80

Chapter 4. Running probes 85
Use of OMNIHOME and NCHOME environment
variables 86
Running probes on UNIX. 86

Running probes as SUID root 87
Running probes on Windows 87

Running a probe as a console application . . . 88
Running a probe as a service 89

Chapter 5. Remotely administering
probes 91
Enabling remote administration of probes 91
Configuring authentication between remote systems
and probes 92
Configuring SSL connections between remote
systems and probes. 94
Sending remote requests to probes (nco_http) . . . 95
Reloading rules files (nco_probereloadrules) . . . 99
Sending property updates to probes
(nco_setprobeprop) 100
Generating events with probes
(nco_probeeventfactory) 101
About the common URI 103

Get the current state of a probe 103

© Copyright IBM Corp. 1994, 2013 iii

Reload the rules file 105
List the probe properties 106
Create a synthetic event 107
Set a probe property 108
Acknowledge event and event_payload . . . 109
Set PATCH or POST requests as blocking or
nonblocking 112

Chapter 6. Common probe properties
and command-line options 113

Chapter 7. Netcool MIB Manager . . . 129
Starting MIB Manager 129
Using Netcool MIB Manager 130

The MIB Modules view 131
The OID Tree view 133
Importing MIB data 135
Exporting MIB data 137
Editing SNMP traps 140
Generating SNMP traps 140

Using MIB Manager devices 141
Creating a new device 141
Updating a device 142
Deleting a device 142

Configuring global preferences 142
Setting directory preferences 143
Setting export preferences 143
Setting general preferences 144
Setting logging preferences 144
Setting search preferences 145

MIB Manager command-line options 146
About SNMP 149

MIB concepts and design 150
MIB object types 153
Valid MIB object formats 155

Chapter 8. About gateways 159
Types of gateways 160
Unidirectional ObjectServer gateways 161
Bidirectional ObjectServer gateways 161
Database, helpdesk, and other gateways 161

Gateway components. 162
Unidirectional gateways 162
Bidirectional gateways 162

Store-and-forward mode for gateways 164
Secure mode for gateways 165
Gateway writers and failback 166

Chapter 9. Configuring gateways . . . 167
Using multiple configuration files 167

Map definition file 168
Table replication definition file 171
Startup command file 174
Common gateway properties and command-line
options 175
Issuing commands to running gateways . . . 179

Using single configuration files 179

Reader configuration 180
Writer configuration 180
Route configuration 181
Mapping configuration 181
Filter configuration 182
Common gateway command-line options . . . 183
Configuring running gateways 185
Gateway commands 186

Creating conversion tables 199

Chapter 10. Running gateways 201
Use of OMNIHOME and NCHOME environment
variables 201
Running gateways. 201
Troubleshooting gateway problems 202

Appendix A. Probe error messages
and troubleshooting techniques . . . 203
Generic error messages 203

Fatal-level messages 203
Error-level messages 204
Warning-level messages 206
Information-level messages 206
Debug-level messages 206

ProbeWatch and TSMWatch messages 208
Troubleshooting probes 210

Common problem causes 210
What to do if 210

Appendix B. Common gateway error
messages 215

Appendix C. Regular expressions . . 223
NETCOOL regular expression library 223
TRE regular expression library 225

Metacharacters 225
Minimal or non-greedy quantifiers 227
Bracket expressions 228
Constructs for multicultural support. 229
Backslash sequences 230

Appendix D. ObjectServer tables and
data types 233
alerts.status table 233
alerts.details table 245
alerts.journal table 245
service.status table. 246
registry.probes table 247
ObjectServer data types 248

Notices 251
Trademarks 253

Index 255

iv IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

About this publication

Tivoli Netcool/OMNIbus is a service level management (SLM) system that delivers
real-time, centralized monitoring of complex networks and IT domains.

The IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide contains introductory and
reference information about probes, including probe rules file syntax, properties
and command-line options, error messages, and troubleshooting techniques. This
publication also contains introductory and reference information about gateways,
including gateway commands, command-line options, and error messages.

Intended audience
This publication is intended for both users and administrators who need to
configure and use probes and gateways.

Probes and gateways are part of Tivoli Netcool/OMNIbus, and it is assumed that
you understand how Tivoli Netcool/OMNIbus works.

What this publication contains

This publication contains the following sections:
v Chapter 1, “About probes,” on page 1

Provides information about probes, their architecture, components, and modes of
operation.

v Chapter 2, “Probe rules file syntax,” on page 19
Describes the syntax of the rules file that defines how the probe must process
event data to create a meaningful Tivoli Netcool/OMNIbus alert.

v Chapter 3, “Probe rules file customizations,” on page 67
Describes the customizations that can be applied to probe rules files to extend
the functionality of probes.

v Chapter 4, “Running probes,” on page 85
Describes how to run probes.

v Chapter 5, “Remotely administering probes,” on page 91
Describes how to remotely manage probes using the probe HTTP interface.

v Chapter 6, “Common probe properties and command-line options,” on page 113
Describes the properties and command-line options that are common to all
probes and TSMs.

v Chapter 7, “Netcool MIB Manager,” on page 129
Provides information about using Netcool MIB Manager to parse Simple
Network Management Protocol (SNMP) management information base (MIB)
files.

v Chapter 8, “About gateways,” on page 159
Provides information about gateways, their modes of operation, and gateway
components.

v Chapter 9, “Configuring gateways,” on page 167
Provides information about configuring gateways.

© Copyright IBM Corp. 1994, 2013 v

v Chapter 10, “Running gateways,” on page 201
Describes how to run gateways.

v Appendix A, “Probe error messages and troubleshooting techniques,” on page
203
Provides information on probe error messages and troubleshooting.

v Appendix B, “Common gateway error messages,” on page 215
Provides information on gateway error messages.

v Appendix C, “Regular expressions,” on page 223
Provides reference information on regular expressions.

v Appendix D, “ObjectServer tables and data types,” on page 233
Provides reference information on relevant ObjectServer tables.

Publications
This section lists publications in the Tivoli Netcool/OMNIbus library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Tivoli Netcool/OMNIbus library

The following documents are available in the Tivoli Netcool/OMNIbus library:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC14-7526

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC14-7527
Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide, SC14-7528
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC14-7529
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC14-7530
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent User's Guide, SC14-7532
Describes how to install the health monitoring agent for Tivoli
Netcool/OMNIbus and contains reference information about the agent.

v IBM Tivoli Netcool/OMNIbus Event Integration Facility Reference, SC14-7533
Describes how to develop event adapters that are tailored to your network
environment and the specific needs of your enterprise. This publication also
describes how to filter events at the source.

v IBM Tivoli Netcool/OMNIbus Error Messages Guide, SC14-7534
Describes system messages in Tivoli Netcool/OMNIbus and how to respond to
those messages.

vi IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

v IBM Tivoli Netcool/OMNIbus Web GUI Administration API (WAAPI) User's Guide,
SC22-7535
Shows how to administer the Tivoli Netcool/OMNIbus Web GUI using the XML
application programming interface named WAAPI

v IBM Tivoli Netcool/OMNIbus ObjectServer HTTP Interface Reference Guide,
SC27-5613Describes the URIs and common behaviors of the Application
Programming Interface (API) that is called the ObjectServer HTTP Interface.
Describes how to enable the API and provides examples of JSON payloads, and
HTTP requests and responses.

v IBM Tivoli Netcool/OMNIbus ObjectServer OSLC Interface Reference Guide,
SC27-5613Describes the services, resources, and common behaviors of the Open
Services for Lifecycle Collaboration (OSLC) Application Programming Interface
(API) that is called the ObjectServer OSLC Interface. Describes how to enable the
API and provides examples of service provider definitions, RDF/XML payloads,
and HTTP requests and responses.

Accessing terminology online

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows Adobe Reader to print letter-sized pages on
your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.

About this publication vii

http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

3. On the left side of the page, click About this site to see an information page
that includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate some
features of the graphical user interface.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

Documentation
If you have a suggestion for improving the content or organization of this
guide, send it to the Tivoli Netcool/OMNIbus Information Development
team at:

mailto://L3MMDOCS@uk.ibm.com

Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,

viii IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa
mailto://L3MMDOCS@uk.ibm.com

multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths

This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables, and replace each forward slash (/) with a backslash (\) in
directory paths. For example, on UNIX systems, the $NCHOME environment
variable specifies the path of the Netcool® home directory. On Windows systems,
the %NCHOME% environment variable specifies the path of the Netcool home
directory. The names of environment variables are not always the same in the
Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Operating system-specific directory names

Where Tivoli Netcool/OMNIbus files are identified as located within an arch
directory under NCHOME, arch is a variable that represents your operating system
directory, as shown in the following table.

Table 1. Directory names for the arch variable

Directory name represented by arch Operating system

aix5 AIX® systems

hpux11hpia HP-UX Itanium-based systems

linux2x86 Red Hat Linux and SUSE systems

linux2s390 Linux for System z®

About this publication ix

Table 1. Directory names for the arch variable (continued)

Directory name represented by arch Operating system

solaris2 Solaris systems

win32 Windows systems

Fix pack information

Information that is applicable only to the fix pack versions of Tivoli
Netcool/OMNIbus are prefaced with a graphic. For example, if a set of
instructions is preceded by the graphic Fix Pack 1 , it means that the instructions
can only be performed if you installed fix pack 1 of your installed version of Tivoli
Netcool/OMNIbus. In the release notes, descriptions of known problems that are
prefaced with Fix Pack 1 are solved in fix pack 1, and so on.

Note: Fix packs are distributed separately for the server components and the Web
GUI component.

x IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 1. About probes

Probes and Telco Service Managers (TSMs) connect to an event source, detect and
acquire event data, and forward the data to the ObjectServer as alerts. TSMs
operate in the same manner as probes but have some additional functions. Probes
and TSMs use the logic specified in a rules file to manipulate the event elements
before converting them into fields of an alert in the ObjectServer alerts.status table.

The following figure shows how probes fit into the Tivoli Netcool/OMNIbus
architecture.

The flow of event data is as follows:

�1� Event data is generated by the probe target.

�2� The probe tokenizes the event data, adds extra information to the event,
and assigns values to the fields in the ObjectServer alerts.status table. The
probe then forwards the processed data to the ObjectServer as an alert.

�3� The ObjectServer stores and manages alerts, which can be displayed in the
event list, and optionally forwarded to one or more gateways.

Note: The information in this publication is generic to all probes. For
probe-specific information, see the individual probe publications in the IBM Tivoli
Network Management Information Center:
1. Go to http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp.
2. Expand the IBM Tivoli Netcool/OMNIbus node in the navigation pane on the left.
3. Expand the Tivoli Netcool/OMNIbus probes and TSMs node.
4. Look for the relevant publication.

RDBMS

Remedy
ARS

Gateway

GatewayObjectServer
NCOMS

Event List

Probe

Probe
Target

Raw Data

snmp-trap **
sequence I 4305
receive time U
8290009 36
version 10 com-
munity S public
enterprise
0 1.3.6

332

1

Figure 1. Event processing in Tivoli Netcool/OMNIbus

© Copyright IBM Corp. 1994, 2013 1

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

Related concepts:
“Types of probes”
Each probe is uniquely designed to acquire event data from a specific source.
However, probes can be categorized based on how they acquire events.

Probe registration
When a probe connects to the ObjectServer, it registers information about itself in
the registry.probes table.

The registry.probes table tracks dynamic runtime information about probes. The
probe controls what data is entered into the table.

If you have two or more instances of a probe running on one computer, and each
instance has the same name, only one instance will be registered in the
registry.probes table. To enable registration of all the instances of a probe running
on the same computer, you must use unique values for each probe's Name property.

Note: When a probe is connected to the ObjectServer through a proxy server, the
connection ID of the probe can change over time and it might therefore be
registered incorrectly. This is because the proxy server optimizes its ObjectServer
connections and dynamically shuffles probe connections around. However, the
connection ID stored in the registry.probes table remains the same. It is not
updated when a probe is moved to another connection on the same proxy server.

A workaround for this problem is to not use a proxy server in multitiered
deployments.

If you use the kill -9 command to stop a probe process, and the probe is
connected through a proxy server, the existing probe data in the registry.probes
table is retained and is not refreshed when the probe is restarted. This problem
does not arise when a probe process is stopped using the kill command.
Related reference:
“registry.probes table” on page 247
The registry.probes table is used to track dynamic runtime information about
probes. When a probe connects to the ObjectServer, it registers information about
itself in the registry.probes table. The probe controls what data is entered into the
table.

Types of probes
Each probe is uniquely designed to acquire event data from a specific source.
However, probes can be categorized based on how they acquire events.

The types of probes are:
v Device
v Log file
v Database
v API
v CORBA
v Miscellaneous

The probe type is determined by the method in which the probe detects events.
For example, the Probe for Agile ATM Switch Management detects events

2 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

produced by a device (an ATM switch), but it acquires events from a log file, not
directly from the switch. Therefore, this probe is classed as a log file probe and not
a device probe. Likewise, the Probe for Oracle obtains event data from a database
table, and is therefore classed as a database probe.

Device probes
A device probe acquires events by connecting to a remote device, such as an ATM
switch.

Device probes often run on a separate machine to the one they are probing, and
connect to the target machine through a network link, modem, or physical cable.
Some device probes can use more than one method to connect to the target
machine.

After connecting to the target machine, the probe detects events and forwards
them to the ObjectServer. Some device probes are passive and wait to detect an
event before forwarding it to the ObjectServer. Other device probes are more active
and issue commands to the target device in order to acquire events.

Log file probes
A log file probe acquires events by reading a log file that is created by the target
system.

For example, the Probe for Heroix RoboMon Element Manager reads the Heroix
RoboMon Element Manager event file.

Most log file probes run on the machine where the log file resides; this is not
necessarily the same machine as the target system. The target system appends
events to the log file. Periodically, the probe opens the log file, acquires and
processes the events stored in it, and forwards the relevant events to the
ObjectServer as alerts. You can configure how often the probe checks the log file
for new events, and how events are processed.

Database probes
A database probe acquires events from a single database table; the source table.
Depending on the configuration, any change (insert, update, or delete) to a row of
the source table can produce an event.

For example, the Probe for Oracle acquires data from transactions logged in an
Oracle database table.

When a database probe starts, it creates a temporary logging table and adds a
trigger to the source table. When a change is made to the source table, the trigger
forwards the event to the logging table. Periodically, the events stored in the
logging table are forwarded to the ObjectServer as alerts, and the contents of the
logging table are discarded. You can configure how often the probe checks the
logging table for new events.

Attention: Existing triggers on the source table might be overwritten when the
probe is installed.

Database probes treat each row of the source table as a single entity. Even if only
one field of a row in the source table changes, all of the fields of that row are
forwarded to the logging table, and from there to the ObjectServer. If a row in the

Chapter 1. About probes 3

source table is deleted, the probe forwards the contents of the row before it was
deleted. If a row in the source table is inserted or updated, the probe forwards the
contents of the row after the insert or update action.

API probes
An API probe acquires events through the application programming interface (API)
of another application.

For example, the Probe for Sun Management Center uses the Sun Management
Center Java™ API to connect remotely to the Sun Management Center.

API probes use specially-designed libraries to acquire events from another
application or management system. These libraries contain functions that connect
to the target system and manage the retrieval of events. The API probes call these
functions, which connect to the target system and return any events to the probe.
The probe processes these events and forwards them to the ObjectServer as alerts.

CORBA probes
The Common Object Request Broker Architecture (CORBA) allows distributed
systems to be defined independently of a specific programming language. CORBA
probes use CORBA interfaces to connect to the data source, which is usually an
Element Management System (EMS).

Equipment vendors publish the details of their specific CORBA interface as
Interface Definition Language (IDL) files. These IDL files are used to create the
CORBA client and server applications. A specific probe is required for each specific
CORBA interface. Some CORBA probes use the IBM Object Request Broker (ORB)
to communicate with other vendor ORBs. The IBM ORB is supplied with Tivoli
Netcool/OMNIbus. Some CORBA probes use ORBs from other vendors. See the
probe documentation for details of which ORB is required.

Most CORBA probes are written using Java, and require specific Java components
to be installed to run the probe, as described in the individual publications for
these probes. Probes written in Java use the following additional processes:
v The probe-nco-p-nonnative probe, which enables probes written in Java to

communicate with the standard probe C library (libOpl)
v Java runtime libraries

Miscellaneous probes
All of the miscellaneous probes have characteristics that differentiate them from
the other types of probes, and from each other. Each of these probes carries out a
specialized task that requires it to work in a unique way.

For example, the Email Probe connects to the mail server, retrieves e-mails,
processes them, deletes them, and then disconnects. This is useful on a workstation
that does not have sufficient resources to permit an SMTP server and associated
local mail delivery system to be kept resident and continuously running.

Another example of a probe in the miscellaneous category is the Ping Probe. It is
used for general purpose applications on UNIX operating systems and does not
require any special hardware. You can use the Ping Probe to monitor any device
that supports the ICMP protocol, such as switches, routers, PCs, and UNIX hosts.

4 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Probe components
A probe has the following primary components: an executable file, a properties file,
and a rules file.

Some probes have additional components. When additional components are
provided, they are described in the individual probe publications.

Executable file
The executable file is the core of a probe. This file connects to the event source,
acquires and processes events, and forwards the events to the ObjectServer as
alerts.

On 32-bit UNIX and Linux operating systems, probes are installed to the
$NCHOME/omnibus/probes/arch directory.

On 64-bit UNIX and Linux operating systems, probes are installed to the
$NCHOME/omnibus/platform/arch/probes64 directory.

On Windows operating systems, probes are installed to the %NCHOME%\omnibus\
probes\win32 directory.

On all operating systems, you must use the nco_p_* wrapper scripts in
$NCHOME/omnibus/probes/ to start probes, for example:

$NCHOME/omnibus/probes/nco_p_ping

When the probe starts, it obtains information about how to configure its
environment from its properties and rules files. The probe uses this configuration
information to customize the data that it forwards to the ObjectServer.
Related concepts:
“Properties file”
Probe properties define the environment in which the probe runs.
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.

Properties file
Probe properties define the environment in which the probe runs.

For example, the Server property specifies the ObjectServer to which the probe
forwards alerts. Probe properties files are stored in the following directory:

$NCHOME/omnibus/probes/arch

Where arch represents the operating system directory.

Properties files are identified by the .props file extension. For example, the
properties file for the Ping Probe is: $NCHOME/omnibus/probes/solaris2/ping.props.

Properties files consist of name-value pairs separated by a colon, as shown in the
following example:
Server : "NCOMS"

Chapter 1. About probes 5

In this name-value pair, Server is the name of the property and NCOMS is the value
to which the property is set. String values must be enclosed in double quotation
marks (" "). Other values do not require quotation marks.

Important: If you change probe properties, you might need to restart the probe for
the change to take effect. Most probe properties are read only when the probe
initializes. If you change a probe property while a probe is running, the change is
stored as a variable in the probe rules file. You cannot force a probe to save the
changed or new value of the property while the probe is running.
Related concepts:
“Executable file” on page 5
The executable file is the core of a probe. This file connects to the event source,
acquires and processes events, and forwards the events to the ObjectServer as
alerts.
Chapter 4, “Running probes,” on page 85
When running a probe, you can specify properties in a properties file or options at
the command line to configure settings for the probe.

Probe property types
Probe properties can be divided into two categories: common properties and
probe-specific properties.

Common properties are relevant to all probes. For example, the Server property is
a common property, because every probe needs to know which ObjectServer to
send alerts to.

Probe-specific properties vary by probe. Some probes do not have any specific
properties, but most have additional properties that relate to the environment in
which they run. For example, the Ping Probe has a Pingfile property that specifies
the name of a file containing a list of the machines to be pinged.

Probe-specific properties are described in the individual probe publications.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Probe property versus probe command-line option usage
Each probe property has a corresponding command-line option.

For example, the Server property is set in the properties file as follows:
Server : "NCOMS"

You can also set this property on the command line by using the -server
command-line option as follows:

$OMNIHOME/probes/nco_p_probename -server NCOMS

The command-line option overrides the property when both are set. For example,
if the property sets the server to NCOMS and the command-line option sets the
server to STWO, the value STWO is used for the ObjectServer name.

6 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Rules file
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.

Rules files work as follows:
1. The probe acquires raw data from the event source and breaks it down into

tokens. Each token represents a piece of event data.
2. The probe parses these tokens to elements.
3. The probe processes these elements according to the rules in the rules file, to

assign values to the fields in the ObjectServer. These field values are the event
details in the form that is used by the ObjectServer.

4. The probe forwards the field values to the ObjectServer as an alert.

In the rules file, elements are identified by the $ symbol. For example, $Node is an
element that contains the node name of the event source. Field values are
identified by the @ symbol. For example, @Node can be a field value that contains
the node name of the event source.

When the probe processes the elements, the @Identifier field is assigned a unique
value. Duplicate alerts, that is, events that have the same value in the @Identifier
field, are correlated, so that they are displayed in the event list only once.

Local rules files are stored in the $NCHOME/omnibus/probes/arch directory, where
arch is the operating system directory.

The rules file is identified by the .rules file extension. For example, the rules file
for the Ping Probe that runs on Solaris is: $NCHOME/omnibus/probes/solaris2/
ping.rules

A probe reads its rules file only at startup, or if the probe is forced to reread its
rules file. Rules files can be cached, so that if a probe is unable to read its rules file,
the probe attempts to read the rules from the cached file.

You can use a Web address to specify a rules file on a remote server that is
accessible by using HTTP. This method allows all rules files to be sourced for each
probe from a central point. You can use a suitable configuration management tool,
such as CVS, at the central point to enable version management of all rules files.

Chapter 1. About probes 7

Related concepts:
“Executable file” on page 5
The executable file is the core of a probe. This file connects to the event source,
acquires and processes events, and forwards the events to the ObjectServer as
alerts.
“Probe architecture” on page 9
The function of a probe is to acquire information from an event source and
forward it to the ObjectServer. Probes use tokens and elements, and apply rules, to
transform event source data into a format that the ObjectServer can recognize.
Chapter 4, “Running probes,” on page 85
When running a probe, you can specify properties in a properties file or options at
the command line to configure settings for the probe.
Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.
“Enabling caching of probe rules files” on page 61
To ensure that a probe is always able to read a valid set of rules when the probe is
started, enable the caching of the rules file. By default, rules file caching is
disabled.
Related reference:
Chapter 2, “Probe rules file syntax,” on page 19
The rules file defines how the probe should process event data to create a
meaningful Tivoli® Netcool/OMNIbus alert. The rules file also creates an identifier
for each alert to uniquely identify the problem source, so that repeated events can
be deduplicated.

Naming conventions for probe component files
Each probe has an abbreviated name that is used to identify the probe executable
file and other associated files.

The naming conventions used for probe file names are shown in the following
table.

Table 2. Naming conventions for probe file names

Probe file type File name and location

Properties file $NCHOME/omnibus/probes/arch/probename.props

Rules file $NCHOME/omnibus/probes/arch/probename.rules

In these paths:
v arch represents the operating system directory on which the probe is installed;

for example, solaris2 on a Solaris system.
v probename represents the abbreviated probe name.

For example, the abbreviated name for SunNet Manager is snmlog and the Probe
for SunNet Manager properties file is named snmlog.props.

The rules file is named snmlog.rules.

8 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Probe architecture
The function of a probe is to acquire information from an event source and
forward it to the ObjectServer. Probes use tokens and elements, and apply rules, to
transform event source data into a format that the ObjectServer can recognize.

The following figure shows how probes use rules to process the event data that is
acquired from the event source.

The processing stages are as follows:

�1� The raw event data that a probe acquires cannot be sent directly to the
ObjectServer. The probe breaks the event data into tokens. Each token
represents a piece of event data.

�2� The probe then parses these tokens into elements and processes the
elements according to the rules in the rules file. Elements are identified in
the rules file by the $ symbol. For example, $Node is an element
containing the node name of the event source.

�3� Elements are used to assign values to ObjectServer fields, which are
indicated by the @ symbol. The field values contain the event details in a
form that the ObjectServer can understand. Fields make up the alerts that
are forwarded to the ObjectServer, where they are stored and managed in
the alerts.status table, and displayed in the event list.

The Identifier field is also generated by the rules file.

Gateway

Event ListObjectServer
NCOMS

@Identifier
@NodeNumber
@IPAddress
@Cause
@Summary
@Time
@Date
@Summary
@Sequence
@Version
@Text
@Flag

$NodeNumber
$IPAddress
$Cause
$Summary
$Time
$Date
$Summary
$Sequence
$Version
$Text
$Flag

NodeNumber
IPAddress
Cause
Summary
Time
Date
Summary
Sequence
Version
Text
Flag

Probe

T””0.0.0.0 10
0122 0.0.0.0
82 8097 562
9000937 8290
00 936 0 0 0
Pope23
snmp-trap”
sequence I
4305 receive
time U
82 9000936

3321

Figure 2. Event mapping using rules

Chapter 1. About probes 9

Related concepts:
“How unique identifiers are constructed for events”
The Identifier field (@Identifier) uniquely identifies a problem source. Like other
ObjectServer fields, the Identifier field is constructed from the tokens that the
probe acquires from the event stream according to the rules in the rules file.
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.

How unique identifiers are constructed for events
The Identifier field (@Identifier) uniquely identifies a problem source. Like other
ObjectServer fields, the Identifier field is constructed from the tokens that the
probe acquires from the event stream according to the rules in the rules file.

The Identifier field allows the ObjectServer to correlate alerts so that duplicate
alerts are displayed in the event list only once. Instead of inserting a new alert, the
alert is reinserted; that is, the existing alert is updated. These updates are
configurable. For example, the Tally field (@Tally) is typically incremented to keep
track of the number of times that the event occurs.

It is essential that the identifier identifies repeated events appropriately. The
following identifier is not specific enough, because any events with the same
manager and node are treated as duplicates:
@Identifier=@Manager+@Node

If the identifier is too specific, the ObjectServer cannot correlate and deduplicate
repeated events. For example, an identifier that contains a time value prevents
correct deduplication.

The following identifier correctly identifies repeated events in a typical
environment:
@Identifier=@Node+" "+@AlertKey+" "+@AlertGroup+" "+@Type+" "+@Agent+" "+@Manager

Event deduplication with probes

Deduplication is managed by the ObjectServer, but can be configured in the probe
rules file. This enables you to set deduplication rules on a per-event basis. You can
specify which fields of an alert are to be updated if the alert is deduplicated using
the update function.

10 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts:
“Probe architecture” on page 9
The function of a probe is to acquire information from an event source and
forward it to the ObjectServer. Probes use tokens and elements, and apply rules, to
transform event source data into a format that the ObjectServer can recognize.
Related reference:
Chapter 2, “Probe rules file syntax,” on page 19
The rules file defines how the probe should process event data to create a
meaningful Tivoli Netcool/OMNIbus alert. The rules file also creates an identifier
for each alert to uniquely identify the problem source, so that repeated events can
be deduplicated.
“Update on deduplication function” on page 45
The ObjectServer manages the deduplication process, but you can also configure
this process in the probe rules file. Use the update function to specify which fields
of an alert are to be updated if the alert is deduplicated. This allows deduplication
rules to be set on a per-alert basis.

Modes of operation of probes
You can configure probes to operate in a variety of modes, including
store-and-forward mode, raw capture mode, secure mode, and peer-to-peer failover
mode.

Store-and-forward mode for probes
Probes can continue to run if the target ObjectServer is down. During this period,
the probe switches to store mode. The probe reverts to forward mode when the
ObjectServer is functional again.

Automatic store and forward

By default, the store-and-forward mode is active only after a connection to the
ObjectServer is established, used, and then lost. If the ObjectServer is not running
when the probe starts, the store-and-forward mode is not triggered, and the probe
terminates.

You can set the probe to run in automatic store-and-forward mode. In this mode,
the probe goes straight into store mode if the ObjectServer is not running, on
condition that the probe was connected to the ObjectServer at least once before.
Enable automatic store-and-forward mode by using the -autosaf command-line
option or the AutoSAF property.

Note: If the probe is trying to connect to a virtual pair of ObjectServers and both
of the ObjectServers are down, the probe checks the AutoSAF property setting. If
automatic store-and-forward is enabled, the probe begins to store events in the
store-and-forward file; otherwise, the probe terminates.

Legacy store and forward

When the probe detects that the ObjectServer is not present (usually because it
cannot forward an alert to the ObjectServer), the probe switches to store mode. In
this mode, the probe writes all of the messages that it would normally send to the
ObjectServer to a store-and-forward file. This file name is constructed by using the
value of the SAFFileName property. A .servername extension is automatically
appended to the SAFFileName value, where servername is the name of the

Chapter 1. About probes 11

ObjectServer to which the probe is attempting to send alerts. If the probe is
configured to send alerts to multiple ObjectServers, individual store-and-forward
files are therefore created for each ObjectServer.

If corrupted records are identified in a store-and-forward file, these records are
ignored and the probe will forward only the valid records to the ObjectServer. You
can indicate whether to automatically save a file that contains corrupted records
for future diagnosis by using the KeepLastBrokenSAF property. If you set this
property to 1, the store-and-forward file that contains corrupted records is renamed
SAFFileName.servername.broken. In this file name, SAFFileName is the value of the
SAFFileName property and servername is the name of the ObjectServer to which the
probe is attempting to send alerts. Any previous .broken file is overwritten.

You can also use the StoreSAFRejects property to continuously save the individual
corrupted store-and-forward records for analysis. If the StoreSAFRejects is set to 1,
the corrupted records are continuously saved to a
SAFFileName.servername.rejected file.

Tip: The SAFFileName.servername.rejected file has an unlimited size, and must be
manually deleted when no longer needed.

Legacy store and forward can be configured by using the properties in the
following sample. StoreAndForward must be set to 1 for legacy store and forward.
The other properties display default values that can be changed.
StoreAndForward:1
SAFFileName:’$OMNIHOME/var/SAF’
MaxSAFFileSize:1024
SAFPoolSize:3

Circular store and forward

Run the probe in circular store-and-forward mode to minimize event loss during
failover and failback. In this mode, the probe stores all the alerts that it generates
while it is connected to the ObjectServer. These alerts are stored in rolling
store-and-forward files that roll over after a time interval set by the
RollSAFInterval property. Set the RollSAFInterval property to a value that is
equal to, or greater than, the granularity of the ObjectServer.

The circular store-and-forward files are named SAFFileName.servername and
SAFFileName.servername_1.

When the probe is disconnected from the ObjectServer, the probe stores the
timestamp of the last successful event and the ObjectServer name in a file. The file
is named in the format SAFFilename.DisconnectionTime. This file is stored in the
same directory as the store-and-forward files. If a backup ObjectServer is available
for failover, the probe uses the disconnection time and the value of the
RollSAFInterval property to calculate which events to send to the backup
ObjectServer. For example, if the RollSAFInterval property is set to 90 seconds, all
events from 90 seconds before the time of disconnection are replayed to the backup
ObjectServer. Consequently, some events might be duplicated in the backup
ObjectServer. The probe resends events that might already be sent to the primary
ObjectServer, but were replicated in the backup ObjectServer before the primary
ObjectServer went down.

If the probe is unable to connect to an ObjectServer, the probe automatically
switches its handling of rolling store-and-forward files to the legacy

12 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

store-and-forward behavior. The probe starts storing all events in a pool of
store-and-forward files, where the size of the pool is defined by the SAFPoolSize
property, and the maximum file size is defined by the MaxSAFFileSize property.
During this time, the RollSAFInterval property is not used to roll over the
store-and-forward files; instead, each file rolls over when it reaches the size that is
specified by MaxSAFFileSize.

Circular-store-and-forward can be configured by using the following properties.
StoreAndForward must be set to 2 for circular store and forward; the other
properties display default values that can be changed.
StoreAndForward:2
SAFFileName:’$OMNIHOME/var/SAF’
MaxSAFFileSize:1024
SAFPoolSize:3
RollSAFInterval:90

Summary of store-and-forward behavior

The following table summarizes how the ObjectServer status, and the combination
of AutoSAF and StoreAndForward properties affect the behavior of probes.

Table 3. Store-and-forward summary

ObjectServer
status before
probe startup

AutoSAF
property

StoreAndForward
property Expected result

ObjectServer
down

0 0 The probe does not start.

ObjectServer
down

0 1 The probe does not start.

ObjectServer
down

1 0 The probe starts writing events into
the store-and-forward file. When the
ObjectServer comes up, the probe
forwards the store-and-forward file
events and then stops writing events
to the store-and-forward file. If the
ObjectServer gets disconnected later,
events are not stored.

ObjectServer
down

1 1 The probe starts writing events into
the store-and-forward file. When the
ObjectServer comes up, the probe
forwards the store-and-forward file
events. If the ObjectServer gets
disconnected later, the probe stores
events in store-and-forward files;
these events are forwarded on
reconnection.

Chapter 1. About probes 13

Table 3. Store-and-forward summary (continued)

ObjectServer
status before
probe startup

AutoSAF
property

StoreAndForward
property Expected result

ObjectServer up No effect of
property

0 The probe forwards events in
existing store-and-forward files but it
does not store any new events in
store-and-forward files.

If a probe loses its connection to the
ObjectServer, it terminates in a
controlled way. Any events that the
probe received but did not transmit
to the ObjectServer are lost. A probe
that has multiple ObjectServer
connections cannot run in
store-and-forward mode 0 and is
automatically switched to
store-and-forward mode 1.

ObjectServer up No effect of
property

1 The probe forwards events in the
store-and-forward files to the
connected ObjectServer, and stores
new events in the store-and-forward
files only when disconnected from
the ObjectServer.

ObjectServer up No effect of
property

2 The probe forwards events in the
store-and-forward files to the
connected ObjectServer, and stores
new events in the rolling
store-and-forward files when
connected. The probe stores all
events in a pool of files when
disconnected.

Related reference:
“Multithreaded processing of alert data” on page 52
When a probe rules file is processed, multithreaded processing is used by default
to apply probe rules to the raw event data that is acquired from the event source,
and to send the generated alerts to the registered ObjectServers. Note that this
multithreaded processing is different from the multithreaded or single-threaded
event capture that is implemented in some classes of probes.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Raw capture mode for probes
You can use the raw capture mode to save the complete stream of event data
acquired by a probe into a file, without any processing by the rules file. This can
be useful for auditing, recording, or debugging the operation of a probe.

The captured data is in a format that can be replayed by the Standard Input Probe.
See the publication for the Standard Input Probe for further information. You can
access this publication as follows from the IBM Tivoli Network Management
Information Center (http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/
index.jsp):
1. Expand the IBM Tivoli Netcool/OMNIbus node in the navigation pane on the left.

14 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

2. Expand the Tivoli Netcool/OMNIbus probes and TSMs node.
3. Go to the Universal node.

To enable the raw capture mode, use the -raw command-line option or the
RawCapture property. You can also set the RawCapture property in the rules file, so
that you can send the raw event data to a file only when certain conditions are
met.

Replay the raw captured data, using the Standard Input probe. A possible syntax is
as follows:
cat <raw_capture_filename> | $OMNIHOME/probes/nco_p_stdin –server <server>

For example:
cat opt/Omnibus/var/mttrapd.cap | /opt/Omnibus/probes/nco_p_stdin -server NCOMS

The RawCaptureFile, RawCaptureFileAppend, and MaxRawFileSize properties also
control the operation of the raw capture mode.
Related reference:
“Changing the value of the RawCapture property in the rules file” on page 22
Most probes read properties once at startup, so changing probe properties after
startup does not usually affect probe behavior. However, you can set the
RawCapture property in the rules file, so that you can send the raw event data to a
file only when certain conditions are met.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Secure mode for probes
You can run the ObjectServer in secure mode. When you start the ObjectServer
using the -secure command-line option, the ObjectServer authenticates probe,
gateway, and proxy server connections by requiring a user name and password.

When a connection request is sent, the ObjectServer issues an authentication
message. The probe, gateway, or proxy server must respond with the correct user
name and password combination.

If the ObjectServer is not running in secure mode, probe, gateway, and proxy
server connection requests are not authenticated.

Before running a probe that connects to a secure ObjectServer or proxy server,
ensure that the AuthUserName and AuthPassword properties are set in the probe
properties file, with values for the user name and password. If the user name and
password combination is incorrect, the ObjectServer issues an error message and
rejects the connection.

When in FIPS 140–2 mode, the password can either be specified in plain text, or
can be encrypted with the nco_aes_crypt utility. If you are encrypting passwords
by using nco_aes_crypt in FIPS 140–2 mode, you must specify AES_FIPS as the
encryption algorithm.

When in non-FIPS 140–2 mode, the password can be encrypted with the
nco_g_crypt or nco_aes_crypt utilities. If you are encrypting passwords by using
nco_aes_crypt in non-FIPS 140–2 mode, you can specify either AES_FIPS or AES as

Chapter 1. About probes 15

the encryption algorithm. Use AES only if you need to maintain compatibility with
passwords that were encrypted using the tools provided in versions earlier than
Tivoli Netcool/OMNIbus V7.2.1.

For further information about using the nco_aes_crypt utility, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Peer-to-peer failover mode for probes
Two instances of a probe can run simultaneously in a peer-to-peer failover
relationship. One instance is designated as the master. The other instance acts as a
slave and is on hot standby. If the master instance fails, the slave instance is
activated.

Note: Peer-to-peer failover is not supported for all probes. Probes that list the
Mode, PeerHost, and PeerPort properties when you run the command
$OMNIHOME/probes/nco_p_probename -dumpprops support peer-to-peer failover.

To set up a peer-to-peer failover relationship:
v For the master instance, set the Mode property to master and the PeerHost

property to the network element name of the slave.
v For the slave instance, set the Mode property to slave and the PeerHost property

to the network element name of the master.
v For both instances, set the PeerPort property to the port through which the

master and slave communicate.

The master instance sends a heartbeat poll to the slave instance at the time interval
specified by the BeatInterval property. The slave instance caches all the alert data
it receives and deletes all alert data from the cache each time a heartbeat is
received from the master instance. If the slave instance receives no heartbeat in the
time period defined by the sum of the values of the BeatInterval and
BeatThreshold properties (BeatInterval + BeatThreshold), the slave instance
assumes that the master is no longer active, and forwards all alerts in the cache to
the ObjectServer. The slave instance continues to forward all alerts until it receives
another heartbeat from the original master instance. The timeout period while
waiting for heartbeats is 1 second. So there can be a maximum delay of
(BeatInterval + BeatThreshold + 1) seconds before the slave instance forwards its
cached alerts. All alerts in the cache are sent.

The BeatInterval setting that is defined for the master instance takes precedence;
the slave instance ignores its local BeatInterval setting.

To disable the peer-to-peer failover relationship, run a single instance of the probe
with the Mode property set to standard. This is the default setting.

The failover mode of probes running in a peer-to-peer failover relationship is set in
the properties files.

You can also switch the mode of a probe between master and slave in the rules
file. There is a delay of up to one second before the mode change takes effect. This

16 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

can result in duplicate events if two probe instances are switching from standard
mode to master or slave; however, no data is lost.

When the two probe instances running in store-and-forward mode are connected
to a failover pair of ObjectServers, the master instance sends alerts to the primary
ObjectServer. If the primary ObjectServer fails, the master instance of the probe
fails over and starts sending alerts in its store-and-forward file to the backup
ObjectServer. If the master instance of the probe fails, the slave instance takes over.
If the slave instance fails to connect to the ObjectServer, the slave then creates a
store-and-forward file for storing alert data. When the master instance is
reactivated, any store-and-forward files in the master instance are deleted to
prevent old alerts from being resent.

Example: Setting the peer-to-peer failover mode in the properties
files

Example properties file values for the master are as follows:
PeerPort: 9999
PeerHost: "slavehost"
Mode: "master"

Example properties file values for the slave are as follows:
PeerPort: 9999
PeerHost: "masterhost"
Mode: "slave"

Example: Setting the peer-to-peer failover mode in the rules file

To switch a probe instance to become the master, use the rules file syntax:
%Mode = "master"

Chapter 1. About probes 17

18 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 2. Probe rules file syntax

The rules file defines how the probe should process event data to create a
meaningful Tivoli Netcool/OMNIbus alert. The rules file also creates an identifier
for each alert to uniquely identify the problem source, so that repeated events can
be deduplicated.
Related concepts:
“How unique identifiers are constructed for events” on page 10
The Identifier field (@Identifier) uniquely identifies a problem source. Like other
ObjectServer fields, the Identifier field is constructed from the tokens that the
probe acquires from the event stream according to the rules in the rules file.
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.

Rules file development guidelines
Use the following guidelines to develop rules files with a consistent format and
structure:
v Rules files must be of production quality and not require any additional

modification.
v Rules files must not result in any additional modifications to the ObjectServer.

That is, there must be no additional event fields other than those provided by
Tivoli Netcool/OMNIbus.

v The basic structure of the rules files must be both easily maintainable and easily
extendible, therefore enabling the addition of event handling for new devices
without affecting existing rules.

v The basic textual-conventions used for the rules files must be consistent and
therefore ensure that all newly created rules files share a common format.

v The rules files must be clearly documented to allow each event to be recognized
without the need for any additional documentation.

v The events formatted by the rules files must be deduplicated properly by the
Tivoli Netcool/OMNIbus ObjectServer. The Identifier field (@Identifier) must be
set correctly to enable the granularity of deduplication to be directly controlled.

v The events formatted by the rules files must be compatible, whenever possible,
with the ObjectServer's GenericClear Automation.

v Always make a backup copy of a rules file before modifying it. Save the file as a
.rules.date file. For example, snmp.rules.070131. You need this file in case you
have to perform a rollback.

v Any changes to the rules file must be commented out with a number sign (#) at
the beginning of the line.

v Use the details ($*) function only when debugging rules files or writing rules
files. After using details ($*) for long periods of time, the ObjectServer tables
become very large and the performance of the ObjectServer suffers.

v The SWITCH and CASE constructs are processed more efficiently, and must
therefore be used in preference to the IF and ELSE statements.

v Use lookup tables wherever possible. When multiple values are linked to a
single key, use a multi-column lookup table. Lookup tables must be defined

© Copyright IBM Corp. 1994, 2013 19

within an external file based table, specified with a .lookup file extension. This
enables clear identification of the lookup tables. Additionally, the lookup tables
must be the first elements of the rules files that are read by the probe. That is, in
the basic rules file, locate the lookup file include statement at the top.

v Matching pairs of problem and resolution events must have identical
@AlertGroup and @AlertKey values, and appropriate @Type and @Severity values.

v A Resolution event must have a severity alert of 1 (indeterminate) and a type of
2 (resolution). Do not set the severity of resolution events to 0 (Clear). This
would prevent events being processed by the ObjectServer's GenericClear
Automation.

v Rules file must be created in the same character encoding that is used by the
locale of the probe's runtime environment. The character encoding must be
supported by the International Components for Unicode (ICU) libraries.

Related tasks:
“Testing rules files” on page 58
You can test the syntax of a rules file by using the Probe Rules Syntax Checker,
nco_p_syntax. This is more efficient than running the probe to test that the syntax
of the rules file is correct.

Elements, fields, properties, and arrays in rules files
A probe takes an event stream and parses it into elements. Event elements are
processed by the probe based on the logic in the rules file. Elements are assigned
to fields and forwarded to the ObjectServer, where they are inserted as alerts into
the alerts.status table.

The Identifier field, used by the ObjectServer for deduplication, is also created
based on the logic in the rules file.

Elements are indicated by the $ symbol in the rules file. For example, $Node is an
element containing the node name of the event source. You can assign elements to
ObjectServer fields, indicated by the @ symbol in the rules file.

Note: The normal format for referring to elements works only if the name of the
element contains only letters, digits, and underscores. If a probe dynamically
generates element names, it is possible to generate elements that contain other
characters. You can refer to elements such as these by putting the element name
inside parentheses; for example, $(strange=name).
Related concepts:
“How unique identifiers are constructed for events” on page 10
The Identifier field (@Identifier) uniquely identifies a problem source. Like other
ObjectServer fields, the Identifier field is constructed from the tokens that the
probe acquires from the event stream according to the rules in the rules file.

20 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Assigning values to ObjectServer fields
You can assign values to ObjectServer fields by direct assignment, concatenation, or
by adding text.

Examples are as follows:
v Direct assignment example: @Node = $Node

v Concatenation example: @Summary = $Summary + $Group

v Adding text example: @Summary = $Node + "has problem" + $Summary

You can express numeric values in decimal or hexadecimal form. The following
statements, which set the Class field to 100, are equivalent:
v @Class=100

v @Class=0x64

In addition to assigning elements to fields, you can use processing statements,
operators, and functions to manipulate these values in rules files before assigning
them.

Tip: Elements are stored as strings, so you must use the int function to convert
elements into integers before performing numeric operations.
Related reference:
“Math functions” on page 40
You can use math functions to perform numeric operations on elements. Elements
are stored as strings, so you must use these functions to convert elements into
integers before performing numeric operations.

Assigning temporary elements in rules files
You can create a temporary element in a rules file by assigning it to an expression.

For example:
$tempelement = "message"

An element, $tempelement, is created and assigned the string value message.

If you refer to an element that has not been initialized in this way, the element is
set to the null string ("").

The following example creates the element $b and sets it to setnow:
$b="setnow"

The following example then sets the element $a to setnow:
$a=$b

In the following example, temporary elements are used to extract information from
a Summary element, which has the string value: The Port is down on Port 1 Board
2.
$temp1 = extract ($Summary, "Port ([0-9]+)")
$temp2 = extract ($Summary, "Board ([0-9]+)")
@AlertKey = $temp1 + "." + $temp2

The extract function is used to assign values to temporary elements temp1 and
temp2. Then these elements are concatenated (using the + concatenate operator)

Chapter 2. Probe rules file syntax 21

with a . separating them, and assigned to the AlertKey field. After these
statements are run, the AlertKey field has the value 1.2.
Related reference:
“String functions” on page 36
You can use string functions to manipulate string elements, typically field or
element names.
“Math and string operators” on page 33
You can use math operators to add, subtract, divide, and multiply numeric
operands in expressions. You can use string operators to manipulate character
strings.

Assigning property values to fields
You can assign the value of a probe property, as defined in the properties file or on
the command line, to a field value. A property is represented by a % symbol in the
rules file.

For example, you can add the following statement to your rules file:
@Summary = "Server = " + %Server

In this example, when the rules file is processed, the probe searches for a property
named Server. If the property is found, its value is concatenated to the text string
and assigned to the Summary field. If the property is not found, a null string ("")
is assigned.

Assigning values to properties
You can assign values to a property in the rules file. If the property does not exist,
it is created.

For example, you can create a property called Counter to keep track of the number
of events that have been processed as follows:
if (match(%Counter,""))
{%Counter = 1}
else {%Counter = int(%Counter) + 1}

These properties retain their values across events and when the rules file is re-read.

Changing the value of the RawCapture property in the rules file
Most probes read properties once at startup, so changing probe properties after
startup does not usually affect probe behavior. However, you can set the
RawCapture property in the rules file, so that you can send the raw event data to a
file only when certain conditions are met.

The setting for the raw capture mode takes effect for the current event.

For example:
Start rules processing
%RawCapture=0

if (condition) {
Send the current event to the raw capture file
%RawCapture=1
}

You can enable raw capture mode globally by setting the -raw command-line
option or the RawCapture property in the probe properties file.

22 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts:
“Raw capture mode for probes” on page 14
You can use the raw capture mode to save the complete stream of event data
acquired by a probe into a file, without any processing by the rules file. This can
be useful for auditing, recording, or debugging the operation of a probe.
Related reference:
“Control statements in rules files”
The IF, SWITCH, FOREACH, and BREAK statements provide control flow for
processing rules files.

Using arrays
You must define arrays at the start of a rules file, before any processing statements.

Tip: You must also define tables, and target ObjectServers, before any processing
statements.

To define an array, use the following syntax:
array node_arr

Arrays are one dimensional. Each time an assignment is made for a key value that
already exists, the previous value is overwritten. For example:
node_arr["myhost"] = "a"
node_arr["yourhost"] = "b"
node_arr["myhost"] = "c"

After the preceding statements are run, there are two items in the node_arr array.
The item with the key myhost is set to c, and the item with the key yourhost is set
to b. You can make assignments using probe elements, for example:
node_arr[$Node] = "d"

Note: Array values are persistent until a probe is restarted. If you force the probe
to re-read the rules file by issuing a kill -HUP pid command on the probe process
ID, the array values are maintained.
Related reference:
“Lookup table operations” on page 43
Lookup tables provide a way to add extra information in an event. A lookup table
consists of a list of keys and values.
“Sending alerts to alternative ObjectServers and tables” on page 47
The registertarget, genevent, settarget, and setdefaulttarget functions enable
you to send alerts to one or more ObjectServers, and to define the distribution of
alerts across the ObjectServers.

Control statements in rules files
The IF, SWITCH, FOREACH, and BREAK statements provide control flow for
processing rules files.

Chapter 2. Probe rules file syntax 23

FOREACH statement
Use the FOREACH statement to write statements in the probe rules file language
that iterate through lists of event elements or table entries.

Syntax

The syntax of the FOREACH statement is as follows:
foreach (iterator in list)
{
statements
}

In this syntax, iterator represents the item to be identified by the statement. iterator
can consist of any combination of printable ASCII characters, and must start with a
letter. For example: letter {letter|digit}.

list represents the elements to be processed in the rules file. list can be a
comma-delimited list of elements or an array. You can use $* to instruct the loop to
process all elements. The statement processes the elements in the list in a
non-determinstic order.

statements represents valid probe rules file statements or functions that are to be
applied to the elements in list.

You can nest FOREACH statements inside each other. The FOREACH statement
supports IF and SWITCH statements in the body of a loop.

In a statement the iterator represents the current loop item. Referencing its value
depends on the type of list that is being processed.

When looping through a list of elements, note the following information:
v You must prefix the iterator with $ to reference the current element.
v If used on its own, the iterator represents the name of the current element.

When looping through an array, note the following information:
v You must substitute the iterator for the key in referencing an array item.
v On its own, the iterator represents a string that is the key to the current array

item.

Supported probe rules file functions

All probe rules file functions are supported in a FOREACH statement.

Restrictions

You cannot use the FOREACH statement to iterate through properties, fields, or
columns. You also cannot use the statement to iterate through a combination of
arrays and elements in the same loop.

If you use the details() function in a FOREACH loop, only the result of the
last-executed details() function are stored in the ObjectServer. Additionally,
because the FOREACH statement processes the elements in the rules file in a
non-determinstic order, it cannot be predicted which element is stored.

24 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Examples of the looping function
Use these examples of the FOREACH looping statement to help you deploy the
function in your Tivoli Netcool/OMNIbus environment.

Example 1: Looping through all elements

The following example shows how to use the $* wildcard to process all elements
in a loop:
foreach (e in $*)
{
log(INFO, "The value of $" + e + " = " + $e)

}

This statement would return messages for all elements. Each message is similar to
the following example:

Information: I-UNK-000-000: The value of $DateString = 12/04/10 16:39:50.

Example 2: Looping through a comma delimited list

The following example shows how to convert the $Node, $Agent, and $Group
tokens to lower case:
foreach (e in $Node, $Agent, $Group)
{
$e = lower($e)
}

Example 3: Loop through entries in an array

In the following example, an array called “names” is defined at the top of the rules
file. During an iteration of the loop the key contains the key to the current entry in
“names”. The result of this loop is that each entry in “names” is prefixed with XX.
array names
....
foreach (key in names)
{
log(INFO, "Before: The value of names[" + key + "] = " + names[key])
names[key] = "XX" + names[key]
}

Example 4: Using IF with BREAK

The following example loops through all the elements until an element is found
that has a value prefixed with http://. The URL field is set with this value and the
execution breaks out of the loop.
foreach (e in $*)
{
if (nmatch($e, “http://”))
{
@URL = $e
break
}
}

For more information, see “BREAK statement” on page 30.

Chapter 2. Probe rules file syntax 25

Example 5: Using IF inside a FOREACH loop on SNMP OID fields

The following example proposes a solution for handling differences between
SNMP V1 and V2:
1. In the first loop, x always contains the name of the current element. If the name

begins with OID, the value of the element is added to the working array
“oids.”

2. The key for an entry is prefixed with “OID” followed by a number which is
one less than the number used in the name of the original element.

3. The original element is removed.

The result is that the OID elements are now all moved to the left by one element,
that is $OID1 = $OID2, $OID2 = $OID3, and so on.

Note: This example does not provide a complete solution for handling SNMP V2
and V1 traps.
Declare an empty array
array oids

Loop through all elements.
foreach (x in $*)
{
Find elements whose names start with 'OID’
if(nmatch(x, "OID"))
{
Extract the OID number from the element name
Save the element value in the 'oids’ array.
oids[“OID1”] = $OID2
oids[“OID2”] = $OID3 etc.
$n=extract(x, "OID([0-9]+)")
if(int($n) > 1)
{
$n=int($n)-1
oids[“OID”+$n]=$x
}
Delete original OID element
remove($x)
}
}

Create new ’OID’ elements
foreach (x in oids)
{

$x=oids[x]
}
clear (oids)

Example 6: Using IF inside a FOREACH loop to handle EIF elements

The following example shows how to use the FOREACH statement to remove
single quotation marks (') surrounding any elements in EIF messages:
foreach (e in $*)
{
if(regmatch($e, "^’.*’$"))
{
$e = extract($e, "^’(.*)’$")
log(DEBUG,"Colons removed from Token " + $e)
}
}

26 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example 7: Nested loops

The following example shows how to translate elements that contain encoded
Octet strings (dot-separated integers) and translate the strings to ASCII text:
array octets
table Ascii2Txt =
{
{"0",""},
{"9"," "},
{"32"," "},
{"33","!"},
. . .
{"125","}"},
{"126","~"}
}

foreach (e in $*)
{
$n = split($e, octets, “.”)
$e = “”
foreach (n in octets)
{
$e = $e + lookup(octets[n], Ascii2Txt)
}
clear(octets)
}

Example 8: Using the FOREACH statement to parse name-value
elements

In the following example, the contents of $input represent a set of name-value
pairs separated by semi-colons (;). The example creates new elements from the
name-value pairs.
array pairs
array values
$input="foo=blah;wibble=wobble"
$num = split($input, pairs, ";")
foreach (t in pairs)
{
$n = extract(pairs[t], "(.*)=")
$v = extract(pairs[t], ".*=(.*)")
values[$n] = $v

}
remove($n)
remove($v)
foreach (t in values)
{

$t = values[t]
}

Example 9: Using the FOREACH statement to load name-value pairs
into the @ExtendedAttr field

To create name-values pairs of all current elements and load them into the
@ExtendedAttr field, use the following statement:
@ExtendedAttr = nvp_add($*)

For only a subset of elements, use a statement as shown in the following example:
foreach (e in $interface, $network, $ipaddr, $netmask, $gateway)
{
@ExtendedAttr = nvp_add(@ExtendedAttr, e, $e)
}

Chapter 2. Probe rules file syntax 27

In this example, the statement makes use of the fact that e represents the name of
the element, and $e represents the value of the element. This example would
populate the @ExtendedAttr field with data similar to the following sample:
interface="eth0";network="178.268.2.0";ipaddr="178.268.2.64";
netmask="233.233.233.0";gateway="178.268.2.1"

Example 10: Using the FOREACH statement to selectively remove
name-value pairs from the @ExtendedAttr field

Similarly to “Example 9: Using the FOREACH statement to load name-value pairs
into the @ExtendedAttr field” on page 27, the FOREACH statement can be used to
remove selected name-value pairs from the @ExtendedAttr field, as shown in the
following example:
@ExtendedAttr = nvp_add($*)
foreach (e in $network, $netmask)
{
@ExtendedAttr = nvp_remove(@ExtendedAttr, e)
}

Example 11: Using the SWITCH and BREAK statements in a FOREACH
loop

The following example shows how to use a BREAK statement in a SWITCH
statement to terminate the processing of a FOREACH loop:
foreach (x in $*)
{
switch($x):
{
case “1”:
statements
case “2”:
statements
case “3”:
statements
default:
log (ERROR, “Unexpected element $” + x + “ = “ + $x)
break

}
}

For more information, see “SWITCH statement” on page 29 and “BREAK
statement” on page 30.
Related reference:
“Rules file examples” on page 63
These examples show typical rules file segments.

IF statement
A condition is a combination of expressions and operations that resolve to either
TRUE or FALSE. The IF statement allows conditional running of a set of one or more
assignment statements by running only the rules for the condition that is TRUE.

The IF statement has the following syntax:
if (condition) {
rules
} [else if (condition) {
rules

28 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

} ...]
[else (condition) {
rules
}]

You can combine conditions into increasingly complex conditions using the logical
AND operator (&&), which is true only if all of its inputs are true, and OR operator
(||), which is true if any of its inputs are true. For example:
if match ($Enterprise, "Acme") && match ($trap-type, "Link-Up")
{ @Summary = "Acme Link Up on " + @Node }

Related reference:
“Logical operators” on page 35
You can use logical operators on Boolean values to form expressions that resolve to
TRUE or FALSE.
“String functions” on page 36
You can use string functions to manipulate string elements, typically field or
element names.

SWITCH statement
A SWITCH statement transfers control to a set of one or more rules assignment
statements depending on the value of an expression.

The SWITCH statement has the following syntax:
switch (expression) {
case "stringliteral":
rules
case "stringliteral":
rules
...
default:
[rules]
}

The expression can be any valid expression. For example:
switch($node)

The stringliteral can be any string value. For example:
case "jupiter":

You can have more than one stringliteral separated by the pipe (|) symbol. For
example:
case "jupiter" | "mars" | "venus":

This case runs if the expression matches any of the specified strings.

The SWITCH statement tests for exact matches only. Wherever possible, use this
statement instead of an IF statement because SWITCH statements are processed
more efficiently and therefore run more quickly.

Any rules in the DEFAULT case are run if no other case is matched. Each SWITCH
statement must contain a default case, even if there are no rules associated with it.
There is no fall through from one case to another.

The behaviour of a BREAK statement in a SWITCH statement case is identical to
the behaviour of a BREAK statement inside an IF statement. If the SWITCH
statement is inside the body of a loop statement then the process will exit the loop.

Chapter 2. Probe rules file syntax 29

If the SWITCH statement is not part of a loop body then the rules processing of
the event is terminated at that point and the event is sent on to the ObjectServer.

BREAK statement
Use the BREAK statement in conjunction with the FOREACH statement to break
out of the processing of a loop before the loop is completely processed.

The behavior of the BREAK statement is as follows:
v If the BREAK statement is contained in a FOREACH statement, when the

BREAK statement is processed, processing of the FOREACH loop is terminated
immediately. Processing continues with the next statement after the FOREACH
statement. If the statement contains nested FOREACH statements, only the
innermost loop containing the BREAK statement is exited.

v If the BREAK statement is outside of a FOREACH statement, the BREAK
statement terminates the processing of the rules for the current event. No more
rules are processed after the BREAK but the event is still sent to the
ObjectServer (unlike the discard function).

For additional information, see “Examples of the looping function” on page 25.

Embedding multiple rules files in a rules file
You can include a number of secondary rules files in your main rules file by using
the include statement.

The format is as follows:
include "rulesfile"

Specify the path to the rules file as an absolute or relative path. Relative paths start
from the current rules file directory. You can use environment variables in the path,
as follows:
if(match(@Manager, "ProbeWatch"))
{ include "$OMNIHOME/probes/solaris2/probewatch.rules" }
else ...

If you want to include a remote probe rules file that is stored on an IPv6 Web
server, use square brackets [] to delimit the IPv6 address in the web address. For
example:
include "http://[fed0::7887:234:5edf:fe65:348]:8080/probewatch.rules"

Rules file functions and operators
You can use operators and functions to manipulate elements in rules files before
assigning them to ObjectServer fields.

The following table lists the rules file operators.

Table 4. Rules file operators

Operators Description Further details

*, /, -, + Perform math and string operations. “Math and string
operators” on page 33

&, |, ^, >>, << Perform bitwise operations. “Bit manipulation
operators” on page 34

30 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 4. Rules file operators (continued)

Operators Description Further details

==, !=, <>, <, >, <=, >= Perform comparison operations. “Comparison
operators” on page 35

NOT (also !), AND (also &&), OR (also ||),
XOR (also ^)

Perform logical (Boolean) operations. “Logical operators” on
page 35

The following table lists the rules file functions.

Table 5. Rules file functions

Function name Description Further details

charcount Returns the number of characters in a string. “String functions” on
page 36

clear Removes the elements of an array. “String functions” on
page 36

datetotime Converts a string into a time data type. “Date and time
functions” on page 41

details Adds information to the alerts.details table. “Details function” on
page 45

discard Deletes an entire event. “Elements and event
functions” on page 36

exists Tests for the existence of an element. “Existence function”
on page 35

expand This function is deprecated and must not be used
as the regular expression argument in the regmatch
or extract functions. Instead of using expand,
contain the regular expression in single quotes, for
example:

’[\n\r]’

“String functions” on
page 36

extract Returns the part of a string (which can be a field,
element, or string expression) that matches the
parenthesized section of the regular expression.

“String functions” on
page 36

genevent Enables you to:

v Create and send an alert from a rules file to a
target ObjectServer.

v Send the same alert to more than one
ObjectServer or table.

“Sending alerts to
alternative
ObjectServers and
tables” on page 47

getdate Returns the current date as a date data type. “Date and time
functions” on page 41

getenv Returns the value of an environment variable. “Host and process
utility functions” on
page 42

geteventcount Returns the number of events in the event window. “Monitoring probe
loads” on page 55

gethostaddr Returns the IP address of the host by using a
naming service.

“Host and process
utility functions” on
page 42

gethostname Returns the name of the host by using a naming
service.

“Host and process
utility functions” on
page 42

Chapter 2. Probe rules file syntax 31

Table 5. Rules file functions (continued)

Function name Description Further details

getload Measures the load on the ObjectServer. “Monitoring probe
loads” on page 55

getpid Returns the process ID of a running probe. “Host and process
utility functions” on
page 42

getplatform Returns the operating system platform the probe is
running on.

“Host and process
utility functions” on
page 42

hostname Returns the name of the host on which the probe is
running.

“Host and process
utility functions” on
page 42

int Converts a numeric value into an integer. “Math functions” on
page 40

length Returns the number of bytes in a string. “String functions” on
page 36

log Enables you to log messages. “Message logging
functions” on page 46

lookup Uses a lookup table to map additional information
to an alert.

“Lookup table
operations” on page
43

lower Converts an expression to lowercase. “String functions” on
page 36

ltrim Removes white space from the left of an
expression.

“String functions” on
page 36

match Tests for an exact string match. “String functions” on
page 36

nmatch Tests for a string match at the beginning of a
specified string.

“String functions” on
page 36

nvp_add Enables probes to generate events that contain
extended attributes, which are supplied as
name-value pairs.

“String functions” on
page 36

nvp_remove Used with extended attributes.

Removes specified keys from a name-value pair
string, and returns the new name-value pair string.

“String functions” on
page 36

printable Converts any non-printable characters in an
expression to a space character.

“String functions” on
page 36

real Converts a numeric value into a real number. “Math functions” on
page 40

recover Recovers a discarded event. “Elements and event
functions” on page 36

regmatch Performs full regular expression matching of a
value in a regular expression in a string.

“String functions” on
page 36

regreplace Uses regular expressions to perform search and
replace operations on strings.

“Search and replace
function” on page 53

remove Removes an element from an event. “Elements and event
functions” on page 36

32 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 5. Rules file functions (continued)

Function name Description Further details

registertarget Registers an ObjectServer so alerts can be sent to
multiple ObjectServers.

“Sending alerts to
alternative
ObjectServers and
tables” on page 47

rtrim Removes white space from the right of an
expression.

“String functions” on
page 36

scanformat Converts an expression according to the available
formats, similar to the scanf family of routines in
C.

“String functions” on
page 36

setlog Enables you to set the message log level. “Message logging
functions” on page 46

settarget, setdefaulttarget Sets the ObjectServer to which alerts are sent. “Sending alerts to
alternative
ObjectServers and
tables” on page 47

service Sets the status of a service. “Service function” on
page 54

split Separates a string into elements of an array. “String functions” on
page 36

substr Extracts a substring from an expression. “String functions” on
page 36

table Defines a lookup table. “Lookup table
operations” on page
43

timetodate Converts a time value into a string data type. “Date and time
functions” on page 41

toBase(numeric,numeric) Converts a decimal numeric value into a different
base.

“Math functions” on
page 40

update Indicates which fields are updated when an alert is
deduplicated.

“Update on
deduplication
function” on page 45

updateload Updates the load statistics for the ObjectServer. “Monitoring probe
loads” on page 55

upper Converts an expression to uppercase. “String functions” on
page 36

Math and string operators
You can use math operators to add, subtract, divide, and multiply numeric
operands in expressions. You can use string operators to manipulate character
strings.

The following table describes the math operators supported in rules files.

Table 6. Math operators

Operator Description Example

*

/

Operators used to multiply (*) or divide (/) two
operands.

$eventid=int($eventid)*2

Chapter 2. Probe rules file syntax 33

Table 6. Math operators (continued)

Operator Description Example

+

-

Operators used to add (+) or subtract (-) two
operands.

$eventid=int($eventid)+1

The following table describes the string operator supported in rules files.

Table 7. String operator

Operator Description Example

+ Concatenates two or more strings. @field = $element1 + "message" + $element2

Bit manipulation operators
You can use bitwise operators to manipulate integer operands in expressions.

The following table describes the bitwise operators supported in rules files.

Table 8. Bitwise operators

Operator Description Example

& | ^ Bitwise AND (&), OR (|), and XOR (^). The
results are determined bit-by-bit.

$result1 = int($number1) & int($number2)

>> << Shifts bits right (>>) or left (<<). $result2 = int($number3) >> 1

These operators manipulate the bits in integer expressions. For example, in the
statement:
$result2 = int($number3) >> 1

If number3 has the value 17, result2 resolves to 8, as shown:
16 8 4 2 1

>> 1 0 0 0 1
0 1 0 0 0

Note: The bits do not wrap around. When they drop off one end, they are
replaced on the other end by a 0.

Bitwise operators only work with integer expressions. Elements are stored as
strings, so you must use the int math function to convert elements into integers
before performing these operations.

For more information about the bitwise operators supported in ObjectServer SQL,
see the IBM Tivoli Netcool/OMNIbus Administration Guide.
Related reference:
“Math functions” on page 40
You can use math functions to perform numeric operations on elements. Elements
are stored as strings, so you must use these functions to convert elements into
integers before performing numeric operations.

34 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Comparison operators
You can use comparison operators to test numeric values for equality and
inequality.

The following table describes the comparison operators supported in rules files.

Table 9. Comparison operators

Operator Description Example

== Tests for equality. int($eventid) == 5

!=

<>

Tests for inequality. int($eventid) != 0

<

>

<=

>=

Tests for greater than (>), less than (<), greater
than or equal to (>=), or less than or equal to (<=).

int($eventid) <=30

Logical operators
You can use logical operators on Boolean values to form expressions that resolve to
TRUE or FALSE.

The following table describes the logical operators supported in rules files.

Table 10. Logical operators

Operator Description Example

NOT (also
!)

A NOT expression negates the input value, and is
TRUE only if its input is FALSE.

if NOT(Severity=0)

AND (also
&&)

An AND expression is true only if all of its inputs
are TRUE.

if match($Enterprise,"Acme") &&

match($trap-type,"Link-Up")

OR (also
||)

An OR expression is TRUE if any of its inputs are
TRUE.

if match($Enterprise,"Acme") ||

match($Enterprise,"Bo")

XOR (also
^)

An XOR expression is TRUE if either of its inputs,
but not both, are TRUE.

if match($Enterprise,"Acme") XOR

match($Enterprise,"Bo")

Existence function
You can use the exists function to test for the existence of an element.

Use the following syntax:
exists ($element)

The function returns TRUE if the element was created for this particular event;
otherwise it returns FALSE.

Chapter 2. Probe rules file syntax 35

Elements and event functions
You can use functions to remove elements from an event, discard an entire event,
and recover a discarded event.

The following table describes these functions.

Table 11. Deleting elements or events

Function Description Example

discard Deletes an entire event.
Note: This must be in a conditional
statement; otherwise, all events are
discarded.

if match(@Node,"testnode") { discard }

Fix Pack 1 discarded Tests whether the current alert is
flagged for discarding. This condition
returns TRUE if the alert is flagged for
discarding. If the alert is not flagged for
discarding, FALSE is returned.

if(discarded)
{
log(DEBUG, "Alert from

Node=["+@Node+"]
has been marked for discard")

}

recover Recovers a discarded event. if match(@Node,"testnode") { recover }

remove(element_name) Removes the element from the event. remove(test_element)

String functions
You can use string functions to manipulate string elements, typically field or
element names.

The following table describes the string functions supported in rules files.

Table 12. String functions

Function Description Example

charcount(expression) Returns the number of characters
in a string.
Note: When using single byte
characters, this will be the same as
the number returned by the
length() function. When using
multi-byte characters, this number
can differ from that returned by
the length() function.

$NumChar = charcount($Node)

clear Removes the elements of an array. clear(array_name)

36 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 12. String functions (continued)

Function Description Example

expand("string") Returns the string (which must be
a literal string) with escape
sequences expanded. Possible
expansions are:

\" - double quote

\NNN - octal value of NNN

\\ - backslash

\a - alert (BEL)

\b - backspace

\e - escape (033 octal)

\f - form feed

\n - new line

\r - carriage return

\t - horizontal tab

\v - vertical tab

This function cannot be used as the
regular expression argument in the
regmatch or extract functions.
Note: This function is deprecated
and must not be used as the
regular expression argument in the
regmatch or extract functions.
Instead of using expand, contain
the regular expression in single
quotes, for example:

’[\n\r]’

log(debug, expand("Rules file with
embedded \\\""))

sends the following to the log:

Sun Oct 21 19:56:15 2001 Debug: Rules
file with embedded \"

extract(string, "regexp") Returns the part of the string
(which can be a field, element, or
string expression) that matches the
parenthesized section of the regular
expression.

extract ($expr,"ab([0-9]+)cd")

If $expr is "ab123cd" then the value returned
is 123.

length(expression) Returns the number of bytes in a
string.

$NodeLength = length($Node)

lower(expression) Converts an expression to
lowercase.

$Node = lower($Node)

ltrim(expression) Removes white space from the left
of an expression.

$TrimNode = ltrim($Node)

match(expression, "string") TRUE if the expression value
matches the string exactly.

if match($Node, "New")

nmatch(expression, "string") TRUE if the expression starts with
the specified string.

if nmatch($Node, "New")

Chapter 2. Probe rules file syntax 37

Table 12. String functions (continued)

Function Description Example

nvp_add(string_nvp, $name,
$value [, $name2, $value2,]*)

nvp_add($*)

Creates or updates a name-value
pair string of extended attributes.
Multiple name-value pairs can be
supplied for the string. Variables
and their values can be added to,
or replaced in, the name-value pair
string.

Creates a name-value pair string of
all variables and their values when
called as nvp_add($*).

if (int($PercentFull) > 95)
{
@Severity = 5
@ExtendedAttr = nvp_add(@ExtendedAttr,

"PercentFull", $PercentFull, "Disk",
$Disk)
}

If $PercentFull is 97 and $Disk is /dev/sfa1,
@ExtendedAttr will be (assuming it was
initially empty):
PercentFull="97";Disk="/dev/sfa1"

nvp_remove(string_nvp,
string_key1 [, string_key2, [
...]])

Used with extended attributes.
Removes specified keys from a
name-value pair string, and returns
the new name-value pair string.

Useful where the list of extended
attributes to include is longer than
the list of attributes to exclude. You
can use nvp_add($*) to include all
variables and their values, and
then use nvp_remove to remove
specific ones.

$interface = "eth0"
$network = "178.268.2.0"
$ipaddr = "178.268.2.64"
$netmask = "233.233.233.0"
$gateway = "178.268.2.1"

@ExtendedAttr = nvp_add($*)
@ExtendedAttr =
nvp_remove(@ExtendedAttr, "network",
"netmask")

This results in @ExtendedAttr being:
interface="eth0";ipaddr="178.268.2.64";
gateway="178.268.2.1"

printable(expression) Converts any non-printable
characters in the given expression
into a space character.

$Print = printable($Node)

regmatch(expression, "regexp") Full regular expression matching. if (regmatch($enterprise, "^Acme
Config:[0-9]"))

regreplace(expression,
"regexp", string [, count])

Uses a regular expression and a
substitution string to perform a
search and replace operation on an
input string expression.

$result = regreplace($input, "([%’])",
"")

rtrim(expression) Removes white space from the
right of an expression.

$TrimNode = rtrim($Node)

38 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 12. String functions (continued)

Function Description Example

scanformat(expression,
"string")

Converts the expression according
to the following formats, similar to
the scanf family of routines in C.
Conversion specifications are:

%% - literal %; do not interpret

%d - matches an optionally signed
decimal integer

%u - same as %d; no check is made
for sign

%o - matches an optionally signed
octal number

%x - matches an optionally signed
hexadecimal number

%i - matches an optionally signed
integer

%e, %f, %g - matches an optionally
signed floating point number

%s - matches a string terminated by
white space or end of string

$element = "Lou is up in 15 seconds"

[$node, $state, $time] =
scanformat($element, "%s is %s in %d
seconds")

This sets $node, $state, and $time to Lou,
up, and 15, respectively.

num_returned_fields =
split("string",
destination_array,
"field_separator")

Separates the specified string into
elements of the destination array.

The field separator separates the
elements. The field separator itself
is not returned. If you specify
multiple characters in the field
separator, when any combination
of one or more of the characters is
found in the string, a separation
will occur.

Regular expressions are not
allowed in the string or field
separator.

$num_elements=split("bilbo:
frodo:gandalf",names,":")

creates an array with three entries:

names[1] = bilbo

names[2] = frodo

names[3] = gandalf

num_elements is set to 3.

You must define the names array at the start
of the rules file, before any processing
statements.

substr(expression,n, len) Extracts a substring, starting at the
position specified in the second
parameter, for the number of
characters specified by the third
parameter.

$Substring = substr($Node,2,10)

extracts 10 characters from the second
position of the $Node element

upper(expression) Converts an expression to
uppercase.

$Node = upper($Node)

Chapter 2. Probe rules file syntax 39

Related concepts:
Appendix C, “Regular expressions,” on page 223
Tivoli Netcool/OMNIbus supports the use of regular expressions in search queries
that you perform on ObjectServer data. Regular expressions are sequences of atoms
that are made up of normal characters and metacharacters.
Related reference:
“Using arrays” on page 23
You must define arrays at the start of a rules file, before any processing statements.
“Search and replace function” on page 53
Use the regreplace function to perform search and replace operations on strings
by using regular expressions.

Math functions
You can use math functions to perform numeric operations on elements. Elements
are stored as strings, so you must use these functions to convert elements into
integers before performing numeric operations.

The following table describes the math functions supported in rules files.

Table 13. Math functions

Function Description Example

int(numeric) Converts a numeric value into an
integer.

if int($PercentFull) > 80

real(numeric) Converts a numeric value into a real
number.

@DiskSpace= (real($diskspace)/
real($total))*100

toBase(base,value) Converts a decimal numeric value into
a different base.

toBase(2,16) returns 10000

toBase(16,14) returns E

toBase(16,$a) returns the value of the
element $a converted into base 16

Example: Setting the severity of an alert based on available disk
space

In the following example, the severity of an alert that monitors disk space usage is
set based on the amount of available disk space.
if (int($PercentFull) > 80 && int($PercentFull) <=85)
{
@Severity=2
}
else if (int($PercentFull)) > 85 && int($PercentFull) <=90)
{
@Severity=3
}
else if (int($PercentFull > 90 && int($PercentFull) <=95)
{
@Severity=4
}
else if (int($PercentFull) > 95)
{
@Severity=5
}

40 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example: Calculating the amount of disk space

The percentage of disk space is not always provided in the event stream. You can
calculate the percentage of disk space in the rules file as follows:
if (int($total) > 0)
{
@DiskSpace=(100*int($diskspace))/int($total)
}

This can also be calculated using the real function:
if (int($total) > 0)
{
@DiskSpace=(real($diskspace)/real($total))*100
}

You can then set the severity of the alert, as shown in the preceding example.

Date and time functions
You can use date and time functions to obtain the current time, or to perform date
and time conversions.

Times are specified in UNIX time (as the number of elapsed seconds since
midnight on 1st January 1970 UTC). The following table describes the date and
time functions supported in rules files.

Table 14. Date and time functions

Function Description Rules file example

datetotime(string,
conversion_specification)

Converts a textual representation of a
timestamp into UNIX epoch time (that
is, the number of seconds since
00:00:00 1 Jan 1970 UTC).

$Date = datetotime("Tue Dec 19
18:33:11 GMT+00:00 2000", "EEE MMM
dd HH:mm:ss vv yyyy")

getdate Takes no arguments and returns the
current date as a date.

$tempdate = getdate

timetodate(UTC,
conversion_specification)

Converts a time value into a string. @Summary = "Occurred at " +
timetodate ($StateChange,
"HH:mm:ss, MM/dd/yy")

$Time2 = timetodate (@EventTime,
’EEE MMM dd HH:mm:ss yyyy’)

The conversion_specification parameter of the datetotime and timetodate functions
is the date and time format in which you want the conversion to be expressed. The
following table provides examples of the input and output data that matches some
possible date and time formats.

Note: POSIX date and time formats were deprecated with Tivoli
Netcool/OMNIbus V7.3 and replaced by Locale Data Markup Language (LDML)
date and time patterns. LDML date and time patterns are defined at
http://userguide.icu-project.org/formatparse/datetime.

Table 15. Some LDML date and time formats and matching input and output

Format Example input and output data

MM/dd/yy 02/29/12

MMMM December

Chapter 2. Probe rules file syntax 41

http://userguide.icu-project.org/formatparse/datetime

Table 15. Some LDML date and time formats and matching input and output (continued)

Format Example input and output data

d/M/yyyy H:m:s 19/12/2000 18:33:11

EEE MMM dd HH:mm:ss ZZZZ yyyy Tue Dec 19 17:33:11 GMT 2000

yyyy-MM-dd:hh:mma vv 2009-03-28:02:00PM PT

EEE MMM dd HH:mm:ss yyyy ZZZ Sun Jan 15 08:30:00 2006 +0500

For more information about the LDML date and time formats used in Tivoli
Netcool/OMNIbus, see the IBM Tivoli Netcool/OMNIbus Installation and Deployment
Guide.

Host and process utility functions
You can use utility functions to obtain information about the environment in which
the probe is running.

The following table describes the host and process functions supported in rules
files.

Table 16. Host and process utility functions

Function Description Example

getenv(string) Returns the value of a specified
environment variable.

$My_OMNIHOME = getenv("OMNIHOME")

gethostaddr(string) Returns the IP address of the host
using a naming service (for example,
DNS or /etc/hosts). The argument
can be a string containing a host name
or an IP address. If the host cannot be
looked up, the original value is
returned.
Note: DNS lookup (and other similar
services) can take an appreciable
amount of time which can severely
impact the performance of the probe.
You should consider instead using a
lookup table in the rules file, and only
use gethostaddr if the host is not in
the table.

@Summary = $Summary + " Node: " +
$Node + " Address: " +
gethostaddr($Node)

gethostname(string) Returns the name of the host using a
naming service (for example, DNS or
/etc/hosts). The argument can be a
string containing a host name or IP
address. If the host cannot be looked
up, the original value is returned.
Note: DNS lookup (and other similar
services) can take an appreciable
amount of time which can severely
impact the performance of the probe.
You should consider instead using a
lookup table in the rules file, and only
use gethostname if the host is not in
the table.

@Summary = $Summary + " Node: " +
$Node + " Name: " +
gethostname($Node)

getpid() Returns the process ID of the running
probe.

$My_PID = getpid()

42 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 16. Host and process utility functions (continued)

Function Description Example

getplatform() Returns the operating system platform
the probe is running under. One of the
following values is returned:
linux2x86, solaris2, hpux11, aix5, or
win32.

log(INFO, "Netcool Platform = " +
getplatform())

hostname() Returns the name of the host on which
the probe is running.

$My_Hostname = hostname()

Lookup table operations
Lookup tables provide a way to add extra information in an event. A lookup table
consists of a list of keys and values.

You define a lookup table using the table function, and access the table using the
lookup function.

The lookup function evaluates the expression in the keys of the named table and
returns the associated value. If the key is not found, an empty string is returned.
The lookup function has the following syntax:
lookup(expression,tablename)

You can create a lookup table in the rules file or in a separate file.

Note: If a lookup table file has multiple columns, every row must have the same
number of columns. Any rows that do not have the correct number of columns are
discarded. In single column mode, only the first tab is significant; all later tabs are
read as part of the single value defined on that row.

Defining lookup tables in the rules file
You can create a lookup table directly in the rules file.

About this task

Lookup table definitions must be located at the start of a rules file, after all
registertarget statements, but before any processing statements. A lookup table
can have multiple columns. You can also define multiple lookup tables in a rules
file. For changes to the lookup table to take effect, the probe must be forced to
re-read the rules file.

To create a lookup table:

Procedure
1. Open the rules file for the probe.
2. Following the registertarget statements, add the relevant table definition

entry for a lookup table with the name tablename:
a. To create the lookup table with a list of keys and values, use the following

format:
table tablename={{"key","value"},{"key","value"}...}

b. To create the lookup table with multiple columns, use the following format:
table tablename={{"key1", "value1", "value2", "value3"},
{"key2", "val1", "val2", "val3"}}

Chapter 2. Probe rules file syntax 43

c. To create the lookup table and specify a default option to handle an event
that does not match any of the key values in the table, use the following
format:
table tablename=
{{"key1", "value1", "value2", "value3"},
{"key2", "val1", "val2", "val3"}}
default = {"defval1", "defval2", "defval3"}

Note: The default statement must follow the specific table definition.

Example

For example, to create a lookup table named dept, which matches a node name to
the department that the node is in, add the following line to the rules file:
table dept={{"node1","Technical"},{"node2","Finance"}}

You can access this lookup table in the rules file as follows:
@ExtraChar=lookup(@Node,dept)

This example uses the @Node field as the key. If the value of the @Node field
matches a key in the table, @ExtraChar is set to the corresponding value.

You can obtain values from a multiple value lookup table as follows:
[@Summary, @AlertKey, $error_code] = lookup("key1", tablename)

Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.

Defining lookup tables in a separate file
You can create the table in a separate file, as an alternative to creating the lookup
table directly in the rules file.

If you are specifying a single value, the file must be in the format:
key[TAB]value
key[TAB]value

For multiple values, the format is:
key1[TAB]value1[TAB]value2[TAB]value3
key2[TAB]val1[TAB]val2[TAB]val3

You can specify a default option to handle an event that does not match any of the
key values in a table. The default statement must follow the specific table
definition. The following example is for a table in a separate file:
table dept="$OMNIHOME/probes/solaris2/Dept"
default = {"defval1", "defval2", "defval3"}

For example, to create a table in which the node name is matched to the
department that the node is in, use the following format:
node1[TAB]"Technical"
node2[TAB]"Finance"

44 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Specify the path to the lookup table file as an absolute or relative path. Relative
paths start from the current rules file directory. You can use environment variables
in the path. For example:
table dept="$OMNIHOME/probes/solaris2/Dept"

You can then use this lookup table in the rules file as follows:
@ExtraChar=lookup(@Node,dept)

You can also control how the probe processes external lookup tables with the
LookupTableMode property. This property determines how errors are handled when
external lookup tables do not have the same number of values on each line.

Update on deduplication function
The ObjectServer manages the deduplication process, but you can also configure
this process in the probe rules file. Use the update function to specify which fields
of an alert are to be updated if the alert is deduplicated. This allows deduplication
rules to be set on a per-alert basis.

The update function can enable update on deduplication for fields that are not set
to be updated in the deduplication trigger. You cannot use the update function to
override the deduplication trigger to prevent fields from being updated.

The update function has the following syntax:
update(fieldname [, TRUE | FALSE])

If set to TRUE, update on deduplication is enabled. If set to FALSE, update on
deduplication is disabled. The default is FALSE.

For example, to ensure that the Severity field is updated on deduplication, add the
following entry to the rules file:
update(@Severity)

The following example shows how to disable update on deduplication in the rules
file for a previously-enabled field:
update(@Severity, FALSE)

If, in the deduplication trigger, the field is set to be updated, setting the update
function to FALSE has no effect.

Details function
Details are extra elements created by a probe to display alert information that is
not stored in a field of the alerts.status table. Alerts do not have detail information
unless this information is added.

Detail elements are stored in the ObjectServer details table called alerts.details. To
view details, double-click an alert and select Details.

You can add information to the details table by using the details function. The
detail information is added when an alert is inserted, but not if it is deduplicated.

The following example adds the elements $a and $b to the alerts.details table:
details($a,$b)

The following example adds all of the alert information to the alerts.details table:

Chapter 2. Probe rules file syntax 45

details($*)

Attention: You must only use $* when you are debugging or writing rules files.
After using $* for long periods of time, the ObjectServer tables become very large
and the performance of the ObjectServer suffers.

Example: Using the details function

In this example, the $Summary element is compared to the strings Incoming and
Backup. If there is no match, the @Summary field is set to the string Please see
details, and all of the information for the alert is added to the details table:
if (match($Summary, "Incoming"))
{
@Summary = "Received a call"
}
else if(match($Summary, "Backup"))
{
@Summary = "Attempting to back up"
}
else
{
@Summary = "Please see details"
details($*)
}

Message logging functions
You can use the log function to log messages during rules processing. You can also
set a log level using the setlog function, and only messages equal to, or above, that
level are logged.

There are five log levels: DEBUG, INFO, WARNING, ERROR, and FATAL, in order of
increasing severity. For example, if you set the log level to WARNING, only WARNING,
ERROR, and FATAL messages are logged, but if you set the logging to ERROR, then
only ERROR and FATAL messages are logged.

Log function
The log function sends a message to the log file.

The syntax is:
log([DEBUG | INFO | WARNING | ERROR | FATAL],"string")

Note: When a FATAL message is logged, the probe terminates.

Setlog function
The setlog function sets the minimum level at which messages are logged during
rules processing. By default, the level for logging is WARNING and above.

The syntax is:
setlog([DEBUG | INFO | WARNING | ERROR | FATAL])

46 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example: Message logging
The following lines show a sequence of logging functions that are in the rules file:
setlog(WARNING)
log(DEBUG,"A debug message")
log(WARNING,"A warning message")
setlog(ERROR)
log(WARNING,"Another warning message")
log(ERROR,"An error message")

This produces log output of:
A warning message
An error message

The DEBUG level message is not logged, because the logging setting is set higher
than DEBUG. The second WARNING level message is not logged, because the
preceding setlog function has set the log level higher than WARNING.

Sending alerts to alternative ObjectServers and tables
The registertarget, genevent, settarget, and setdefaulttarget functions enable
you to send alerts to one or more ObjectServers, and to define the distribution of
alerts across the ObjectServers.

Registering target ObjectServers and setting targets for alerts
To register an ObjectServer, and an alerts table in that ObjectServer to which you
want to send events (referred to as the target ObjectServer), use the registertarget
function. If required, you can use this function to specify several target
ObjectServers and corresponding alerts tables. Use the setdefaulttarget function
to specify a different default target ObjectServer and table. To specify an alternative
target ObjectServer that is not a default, use the settarget function.

Register all target ObjectServers at the start of the rules file, before any processing
statements or lookup tables.

In each target ObjectServer, each alert is usually sent to only one alerts table.
Optionally, the alert can also be sent to a corresponding details table. Exceptions
occur when the genevent function is used.

Format of the registertarget function

The format for the registertarget function is as follows:
target = registertarget(servername, backupservername,"databasetable"
[, "detailstable"])

In this statement:
v target is a label to identify the target ObjectServer. This label must be unique

among all the registered target ObjectServers. A label might denote the type or
distribution of alerts to send to the ObjectServer. Examples include
NCOMSalerts, FloodProtectionActiveAlert, HighAlerts, StatsInfoAlert. The target
is used as the argument in genevent, settarget, and setdefaulttarget
functions.

v servername is the name of the target ObjectServer.
v backupservername is the name of the backup target ObjectServer in the failover

pair, if a failover pair is configured.
v databasetable is the name of a valid table in any database into which you want

the alert data to be inserted. Enclose this value in double quotation marks (" ").

Chapter 2. Probe rules file syntax 47

v detailstable is the name of a valid details table in any database into which you
want the alert data to be inserted. Enclose this value in double quotation marks
(" ").

The servername and backupservername values can have either of the following
formats:
v Strings enclosed in double quotation marks (" "), for example "Server" or

"ServerBackup".
v The value of the property preceded by the percent sign (%), for example

%Server or %ServerBackup.

To omit the backup ObjectServer, specify backupservername as an empty string: "".

Usage guidelines

The registertarget function requires the same user authorization for all the
referenced ObjectServers. When connecting to multiple secure ObjectServers, a
probe uses the credentials set by its AuthUserName and AuthPassword properties for
all the target ObjectServers. It is also necessary that the user account has adequate
authorization permissions for all the target tables that the probe sends event data
to.

The first registertarget statement in a probe rules file defines the default target
ObjectServer. This ObjectServer supersedes any target ObjectServer that you specify
by running the probe with the -server command-line option. For example, if a
probe rules file has a single registertarget statement that registers TEST1 as the
default target ObjectServer, and you then run the probe with -server option set to
TEST2, the alerts are sent to TEST1.

If you want additional detail information to be inserted for the alert, use the
details function to specify this detail information in the rules file.

If a rules file is cached, the names of the target ObjectServers are always written to
the cache file as strings. If you registered target ObjectServers by the field names
%Server and %ServerBackup, the values of these fields are also resolved to the
cache file as strings. For example, if the target ObjectServer is called NCOMS, the
registertarget statement alerts = registertarget(%Server,"",
"alerts.status","alerts.details") is written to the cache file as alerts =
registertarget("NCOMS","","alerts.status","alerts.details").

Example 1: Registering multiple target ObjectServers

The following example shows the registertarget function used to register
multiple target ObjectServers. In this example, the alerts are inserted in the
alerts.status table of the TEST1 ObjectServer, unless the settings are overridden by
a subsequent call to the setdefaulttarget or settarget functions.
DefaultAlerts = registertarget("TEST1", "", "alerts.status")
HighAlerts = registertarget("TEST2", "", "alerts.status")
ClearAlerts = registertarget("TEST3", "", "alerts.status")
London = registertarget("NCOMS", "NCOMSBACK", "alerts.london")
MasterStats = registertarget(%Server, %ServerBackup, "master.stats")

Example 2: Specifying a different default target ObjectServer

The following example shows the setdefaulttarget command used to change the
default target ObjectServer for alerts that have specific severities.

48 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

When an event of Major severity or higher comes in,
set the default ObjectServer to TEST2
if(int(@Severity) > 3)
{ setdefaulttarget(HighAlerts) }

Example 3: Specifying an alternative target ObjectServer

The following example shows the settarget command used to change the target
ObjectServer for alerts that have a specific severity.
Send all clear events to TEST3
if (int(@Severity) = 0)
{ settarget(ClearAlerts) }

Related tasks:
“Enabling caching of probe rules files” on page 61
To ensure that a probe is always able to read a valid set of rules when the probe is
started, enable the caching of the rules file. By default, rules file caching is
disabled.
Related reference:
“Details function” on page 45
Details are extra elements created by a probe to display alert information that is
not stored in a field of the alerts.status table. Alerts do not have detail information
unless this information is added.
“Lookup table operations” on page 43
Lookup tables provide a way to add extra information in an event. A lookup table
consists of a list of keys and values.
“Sending alerts to multiple ObjectServers and tables”
If you want to send the same alert to more than one registered ObjectServer or to
more than one table, you must use the genevent function.

Sending alerts to multiple ObjectServers and tables
If you want to send the same alert to more than one registered ObjectServer or to
more than one table, you must use the genevent function.

Some usage scenarios for the genevent function are as follows:
v You want to configure the probe rules file to detect an event flood condition and

temporarily suppress alert data that is being sent to the ObjectServer. You can
use the genevent function to send the ObjectServer an informational alert at the
start of the event flood and when the event flood finishes.

v You require high priority processing alerts and low priority informational alerts
to be separated at source and handled differently. You can use the genevent
function to send the high priority alerts to a high priority ObjectServer, and to
an ObjectServer that correlates and archives all alerts. You can also send the low
priority alerts only to the ObjectServer that correlates and archives all alerts.

v You require statistical analysis of incoming alert data, but do not want to
increase the load on the ObjectServer receiving the events. You can use the
genevent function to send statistical information that is derived from the
incoming alert data to another ObjectServer for analysis at a later stage.

v You want to duplicate all alert data across two or more ObjectServers so that the
ObjectServers can perform different operations on the data. You additionally
want to eliminate the overhead of running a unidirectional gateway between the
ObjectServers. You can use the genevent function to send the alert data to all the
ObjectServers. Note, however, that this type of usage is not intended as a
replacement to the use of a gateway in a failover pair because the duplicated
alerts will not be correctly associated with each other.

Chapter 2. Probe rules file syntax 49

The format for the genevent function is as follows:
genevent(target[, column_identifier, column_value, ...])

In this statement:
v target is the value that you specified for target in the relevant registertarget

statement.
v column_identifier and column_value represent name-value pairs, where

column_identifier is a valid ObjectServer field in the table where the alert is to be
inserted, and column_value is the data value that you want to insert. The
column_identifier value must be prefixed with the @ symbol to denote an
ObjectServer field; for example, @Summary. The column_value can be a static value,
or an expression that is resolved when the rules file is processed; for example
$Summary + $Group. If column_value is a string value, it must be enclosed in
double quotation marks.

Tip: When specifying column_value, use a data type that is appropriate for the
ObjectServer field. From Netcool/OMNIbus Administrator, you can use the
Databases, Tables and Columns pane (which is used to add or edit table
columns) to verify the data types assigned to fields. Alternatively, you can use
the ObjectServer SQL DESCRIBE command.

Note: When the rules file is processed, data type conversion is attempted on a
column value if there is a mismatch between the column identifier and the
specified data type. If the conversion is unsuccessful, a non-fatal error is logged
and the event is not generated.

If you want to send the current alert data to a target ObjectServer, and
automatically insert all available data into the relevant fields, omit the column
identifiers and values from the genevent statement as follows. You might find this
format useful if you want to send a duplicate of the current alert data to more than
one ObjectServer. With this format, note also that the alert data includes only those
fields that have been set up above the genevent statement in the rules file.
genevent(target)

Typically include the column identifiers and values in the genevent(target)
statement if you want to populate a specific subset of the fields in the target
ObjectServer. For example:
genevent(StatusAlerts, @Node, $Node, @Summary, "Condition X has occurred")

To view examples for the genevent function, see the sample secondary rules file
that is provided to support the detection of event floods and anomalous event
rates. This file, called flood.rules, is available in the $NCHOME/omnibus/extensions/
eventflood directory. (The flood.rules file must be used in conjunction with the
accompanying configuration rules file called flood.config.rules.)

Sending detail information and service status to targets

You can use genevent statements to send detail information and service status
under the following conditions:
v If a registertarget statement specifies a details table to which detail

information should be sent, a genevent statement that sends alerts to the same
target will also send the detail information to the details table specified in the
registertarget statement. This condition is true only if the details statement
precedes the genevent statement.

50 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

v If you use the service function to define the status of a service, and the service
statement precedes the genevent statement, the genevent statement will send the
status information to its target ObjectServer.

v If more than one details or service statement precedes or follows a genevent
statement, only the information from the last details or service statement directly
above the genevent statement will be sent to the target. Information that is
generated by any of the other details or service statements is associated with the
main alert only, and is sent only to the relevant targets defined in the
registertarget statements.

In the following example, the genevent statement adds the elements $c and $d to
the alerts.details table in the TEST2 ObjectServer. For the host being monitored, a
marginal service status is also assigned to each alert, when viewed from the
Services window, which is available from the Conductor or event list.
DefaultAlerts = registertarget("TEST1", "", "alerts.status")
HighAlerts = registertarget("TEST2", "", "alerts.status" "alerts.details")
...
details ($a,$b)
...
details ($c,$d)
...
service($host, bad)
...
service($host, marginal)
...
genevent(HighAlerts)
...
details ($y,$z)
...
service($host, good)

Related concepts:
“Detecting event floods and anomalous event rates” on page 67
Event floods can cause ObjectServer outages, and can lead to extended periods
where there is no visibility of network events. An unusually low or high rate of
receipt of events can also be indicative of a problem or change in the source, which
needs to be addressed.
Related reference:
“Registering target ObjectServers and setting targets for alerts” on page 47
To register an ObjectServer, and an alerts table in that ObjectServer to which you
want to send events (referred to as the target ObjectServer), use the registertarget
function. If required, you can use this function to specify several target
ObjectServers and corresponding alerts tables. Use the setdefaulttarget function
to specify a different default target ObjectServer and table. To specify an alternative
target ObjectServer that is not a default, use the settarget function.
“Details function” on page 45
Details are extra elements created by a probe to display alert information that is
not stored in a field of the alerts.status table. Alerts do not have detail information
unless this information is added.
“Service function” on page 54
Use the service function to define the status of a service before alerts are
forwarded to the ObjectServer. The status changes the color of the alert when it is
displayed in the event list and Service windows.

Chapter 2. Probe rules file syntax 51

Multithreaded processing of alert data
When a probe rules file is processed, multithreaded processing is used by default
to apply probe rules to the raw event data that is acquired from the event source,
and to send the generated alerts to the registered ObjectServers. Note that this
multithreaded processing is different from the multithreaded or single-threaded
event capture that is implemented in some classes of probes.

In multithreaded mode, a single thread is used for rules file processing, and
individual threads are used for communicating with each registered ObjectServer.
The rules file processing thread applies the rules to the incoming data, establishes
connections to the relevant ObjectServers, and sends the processed results to the
appropriate communication thread. The communication thread transforms the
processed data into SQL INSERT statements and sends them to the ObjectServer.

If required, you can switch from multithreaded processing to single-threaded
processing by setting the SingleThreadedComms property to TRUE. In single-threaded
mode, a single rules file processing and communication thread is used.

With multithreaded processing, alerts are simultaneously sent to the different
ObjectServers. If required, you can use the single-threaded mode to enforce the
order in which alerts are sent to the ObjectServers; this order is defined by the
order in which the registertarget statements are listed in the rules file. You can
also use the single-threaded mode for debugging, because the order in which
events are processed and sent out can be more easily understood.

In multithreaded mode, if buffering is enabled by using the Buffering property, a
separate text buffer is maintained for each ObjectServer, to temporarily hold data
that cannot be immediately processed by the communication thread. If buffering is
disabled, the SQL INSERT statements are sent to the ObjectServers as soon as the
statements are constructed.

If store-and-forward mode is enabled by using the StoreAndForward property and
multithreaded processing is in operation, separate store-and-forward files are
created to hold the data that cannot be sent to each ObjectServer. The
store-and-forward files are stored in $OMNIHOME/var directory and are named using
the default format SAFFileName.servername, where SAFFileName represents the
SAFFileName property setting and .servername is appended to show the ObjectServer
name.

Note: When running in multithreaded mode, a probe initially starts in
single-threaded mode (by design) before switching to multithreaded mode. This
behavior is also observed when a probe re-reads its rules file, and is recorded in
the probe log file in debug mode.
Related concepts:
“Store-and-forward mode for probes” on page 11
Probes can continue to run if the target ObjectServer is down. During this period,
the probe switches to store mode. The probe reverts to forward mode when the
ObjectServer is functional again.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

52 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Search and replace function
Use the regreplace function to perform search and replace operations on strings
by using regular expressions.

The syntax is as follows:
regreplace(input, "regularexpression", "substitution" [,count])

Where:
v The input is a string expression. The regreplace function reads the input string

from left to right.
v The regularexpression is a string. It cannot be a string expression. You can use

parentheses () in the string to specify substrings that require specific matching.
You can use multiple sets of parentheses in a string.

v The substitution is a string expression that specifies how strings that match input
are to be written in the result. You can use metacharacters to reference matching
substrings (in parentheses), as well as an entire matching string or strings. For
example, \1 matches the first group in the regular expression, \2 the second, and
so on, while & or \0 match the entire string. Characters and strings that do not
match the regular expression are copied to the result string.

v The count is an optional positive integer expression, and denotes the number of
substitutions to be made on matching strings. If you do not provide a value for
count, the substitutions continue until no more matching strings are found. If
count is a non-integer expression, it is interpreted as 0, and the input is not
changed. If count is a negative integer, a warning message is entered in the
probe log, and the input is not changed.

Example: Using search and replace to remove unwanted
characters from a string

The following example shows how to use the regreplace function to replace
underscores (_), percent signs (%), and single quotes (') with a blank string:
$result = regreplace("%Node___=’foobar27’%" , "([_%’]*)", "")

The result of this expression is as follows:
$result="Node=foobar27"

The following example shows how to use the regreplace function to replace
carriage return (CR) or line feed (LF) control characters with a blank string:
@Summary = regreplace($Summary, ’[\n\r]’, "")

Example: Reordering groups of characters in a string

The following example shows how to match multiple substrings within a string
and, in the output, reorder the substrings. The order of substrings in the input
string is changed in the output string.
regreplace("aba argle aca", "(a.a) (.*) (a.a)", "\3 \2 \1")

The regular expression matches the substrings in the following order:
\1="aba"

\2="argle"

\3="aca"

Chapter 2. Probe rules file syntax 53

The substitution string specifies that the matched strings be written in the reverse
order to which the input is read. Consequently, the result of this expression is as
follows:
$result = "aca argle aba"

Example: Using metacharacters to match an entire string

The following example shows how to use the metacharacter &, which can also be
expressed as \0, to match the entire string represented by the regular expression:
regreplace("aaabbbaaa", "a(b+)a" "_&_")

The & or \0 metacharacters match everything that maps to the regular expression,
not only the substring in parentheses. In this example, the regular expression
matches the following substring in the input: abbba. The nonmatching substrings
are copied to the output.

The result of this expression is as follows:
$result="aa_abbba_aa"

Related concepts:
Appendix C, “Regular expressions,” on page 223
Tivoli Netcool/OMNIbus supports the use of regular expressions in search queries
that you perform on ObjectServer data. Regular expressions are sequences of atoms
that are made up of normal characters and metacharacters.

Service function
Use the service function to define the status of a service before alerts are
forwarded to the ObjectServer. The status changes the color of the alert when it is
displayed in the event list and Service windows.

The syntax is:
service(service_identifier, service_status)

The service_identifier identifies the monitored service, for example, $host.

The following table lists the service status levels.

Table 17. Service function status levels

Service status level Definition

BAD The service level agreement is not being met.

MARGINAL There are some problems with the service.

GOOD There are no problems with the service.

No Level Defined The status of the service is unknown.

Example: Service function

If you want a Ping Probe to return a service status for each host it monitors, you
can use the service function in the rules file to assign a service status to each alert.
In the following example, a service status is assigned to each alert based on the
value of the status element.
switch ($status)
{
case "unreachable":

54 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

@Severity = "5"
@Summary = @Node + " is not reachable"
@Type = 1
service($host, bad) # Service Entry
case "alive":
@Severity = "3"
@Summary = @Node + " is now alive"
@Type = 2
service($host, good) # Service Entry
case "noaddress":
@Severity = "2"
@Summary = @Node + " has no address"
service($host, marginal) # Service Entry
case "removed":
@Severity = "5"
@Summary = @Node + " has been removed"
service($host, marginal) # Service Entry
case "slow":
@Severity = "2"
@Summary = @Node + " has not responded within
trip time"
service($host, marginal) # Service Entry
case "newhost":
@Severity = "1"
@Summary = @Node + " is a new host"
service($host, good) # Service Entry
case "responded":
@Severity = "0"
@Summary = @Node + " has responded"
service($host, good) # Service Entry
default:
@Summary = "Ping Probe error details: " + $*
@Severity = "3"
service($host, marginal) # Service Entry

}

Monitoring probe loads
To monitor load, it is necessary to obtain time measurements and calculate the
number of events processed over time. The updateload function takes a time
measurement each time it is called, and the getload function returns the load as
events per second.

Each time the updateload function runs, the current time stamp, recorded in
seconds and microseconds, is added to the beginning of a series of time stamps.
The remaining time stamps record the difference in time from the previous time
stamp. For example, to take a time measurement and update a property called
load with a new time stamp:
%load = updateload(%load)

Tip: Depending on the operating system, differing levels of granularity may be
reported in time stamps.

You can specify a maximum time window for which samples are kept, and a
maximum number of samples. By default, the time window is one second and the
maximum number of samples is 50. You can specify the number of seconds for
which load samples are kept and the maximum number of samples in the format:
time_window_in_seconds.max_number_of_samples

For example, to set or reset these values for the load property:
%load = "2.40"

Chapter 2. Probe rules file syntax 55

When the number of seconds in the time window is exceeded, any samples outside
of that time window are removed. When the number of samples reaches the limit,
the oldest measurement is removed.

The getload function calculates the current load, returned as events per second. For
example, to calculate the current load and assign it to a temporary element called
current_load:
$current_load = getload(%load)

The geteventcount function complements the getload function by returning the
total number of events in the event window.
Related reference:
“Rules file examples” on page 63
These examples show typical rules file segments.

Reserved words in the probe rules language
In the probe rules language, certain words are reserved as keywords, and must not
be used as variable names or property names within probe rules files.

The following list shows the reserved words:
v and
v array
v bad
v break
v case
v char
v character
v charcount
v clear
v datetime
v datetotime
v debug
v decode
v default
v details
v discard

v Fix Pack 1 discarded
v double
v else
v error
v exists
v exit
v expand
v extract
v false
v fatal
v foreach
v genevent

56 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

v getdate
v good
v if
v in
v include
v info
v information
v int
v integer
v len
v length
v log
v lookup
v lower
v ltrim
v marginal
v match
v nmatch
v no
v not
v nvp_add
v nvp_remove
v off
v on
v or
v printable
v real
v recover
v registertarget
v regmatch
v regreplace
v remove
v rtrim
v scanformat
v service
v setdefaultobjectserver
v setdefaulttarget
v setlog
v setobjectserver
v settarget
v split
v string
v substr
v switch
v table

Chapter 2. Probe rules file syntax 57

v timetodate
v true
v update
v upper
v warn
v warning
v xor
v yes

Testing rules files
You can test the syntax of a rules file by using the Probe Rules Syntax Checker,
nco_p_syntax. This is more efficient than running the probe to test that the syntax
of the rules file is correct.

About this task

The Probe Rules Syntax Checker is installed with the Probe Support feature of
Tivoli Netcool/OMNIbus and is installed in the following directory:

v UNIX Linux $NCHOME/omnibus/probes

v Windows %NCHOME%\omnibus\probes\win32

Procedure

To run the Probe Rules Syntax Checker, enter the following command:
nco_p_syntax -rulesfile /rules_file_path/rules_file.rules
When running this command, use the -rulesfile command-line option to specify
the full path and file name of the rules file.

Results

The Probe Rules Syntax Checker runs in debug mode by default. You can override
this setting with the -messagelevel command-line option; for example,
-messagelevel info.

The probe connects to the ObjectServer, tests the rules file, displays any errors to
the screen, and then exits. If no errors are displayed, the syntax of the rules file is
correct. For details about the Probe Rules Syntax Checker, see the publication for
this probe. You can access this publication as follows from the IBM Tivoli Network
Management Information Center (http://publib.boulder.ibm.com/infocenter/
tivihelp/v8r1/index.jsp):
1. Expand the IBM Tivoli Netcool/OMNIbus node in the navigation pane on the left.
2. Expand the Tivoli Netcool/OMNIbus probes and TSMs node.
3. Go to the Universal node.

58 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

Debugging rules files
When you change the rules file, add new rules, or create lookup tables, it is useful
to test the probe by running it in debug mode. Debug mode shows how an event
is being parsed by the probe and can uncover any problems with the rules file.

About this task

You can enable debug mode from the command-line interface or by changing the
probe properties file. If you need to change the message level of a running probe
without stopping the probe, you can use the kill command against the probe
process ID (PID).

Procedure
v To enable debug mode from the command-line interface, enter the following

command:
$OMNIHOME/probes/nco_p_probename -messagelevel DEBUG -messagelog STDOUT

If you omit the -messagelog command-line option, the debug information is sent
to the probe log file in the $OMNIHOME/log directory rather than to the screen.

v To enable debug mode by using the probe properties file, add the following
entries to the file:
MessageLevel: "DEBUG"
MessageLog: "STDOUT"

If you omit the MessageLog property, the debug information is sent to the probe
log file in the $OMNIHOME/log directory rather than to the screen.

v To change the message level of a running probe to debug mode, use the kill
-USR2 pid command on the probe PID.
Each time you issue the kill -USR2 pid command, the message level is cycled.
For more information, see the man pages for the ps and kill commands.

Tip: For JAVA probes, issue the kill command on the nco_p_nonnative process
ID.

What to do next

For changes to the rules file to take effect, force the probe to reread the rules file.
Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.

Chapter 2. Probe rules file syntax 59

Rereading the rules file
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.

Procedure

You can force a probe to reread the rules file in the following ways:
v Run the following command on the probe process ID (PID):

kill -HUP pid

where pid is the process ID.
If the updated rules file contains syntax errors or references to fields that do not
exist, the probe logs an error message on receipt of the HUP signal and
continues to use the previous version of the rules file.
For more information, see the ps and kill man pages.

Tip: For JAVA probes, issue the command kill -HUP on the nco_p_nonnative
process.

v Issue an nco_probereloadrules HTTP command against the probe to reload the
rules file.

v Restart the probe.

Important: If you restart the probe, events might be lost for the time that the
probe is stopped.

60 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts:
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.
Related tasks:
“Debugging rules files” on page 59
When you change the rules file, add new rules, or create lookup tables, it is useful
to test the probe by running it in debug mode. Debug mode shows how an event
is being parsed by the probe and can uncover any problems with the rules file.
“Defining lookup tables in the rules file” on page 43
You can create a lookup table directly in the rules file.
“Reloading rules files (nco_probereloadrules)” on page 99
You can use the nco_probereloadrules utility to remotely reload a probe rules file
without restarting the probe.
“Enabling caching of probe rules files”
To ensure that a probe is always able to read a valid set of rules when the probe is
started, enable the caching of the rules file. By default, rules file caching is
disabled.
Related reference:
“Reload the rules file” on page 105
This request accesses the reloadrulesflag attribute of the probe, which is contained
in the standard probe C library (libOpl). By setting the value of the attribute, the
request triggers the probe to reload its rules file before the next event is processed.
A SIGHUP signal on UNIX triggers the same action.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Enabling caching of probe rules files
To ensure that a probe is always able to read a valid set of rules when the probe is
started, enable the caching of the rules file. By default, rules file caching is
disabled.

When you switch on rules file caching, the probe writes a copy of the rules file to
a single cache file when you start the probe. If the file size exceeds 1 GB, the rules
file is written to multiple cache files. Each time that the probe successfully reads
the rule file, it writes the file to the cache. When the probe is subsequently
restarted, it reads the cache file if it cannot read the rules file.

All include files and lookup tables that are referenced in the rules file are written
to the cache file inline. If the rules file contains registertarget statements that use
the %Server and %ServerBackup fields to register target ObjectServers, the
property values are resolved as quoted strings in the cache file. If the probe rules
parser identifies rows in a lookup table that have duplicate keys, a warning is
output. The cache file does not preserve the order of entries from the rules file, so
if you receive a warning, verify that the order of entries in the cache file would not
change the behavior of the probe.

Chapter 2. Probe rules file syntax 61

Procedure

To enable caching:
1. In the probe properties file, set the CacheRules property to 1.
2. If you want use a caching file that is different to the default, set the

CacheRulesFile property to specify the file path and name. Enclose the path in
double quotation marks (" ").

Results

The probe rereads the rules file and writes it to the cached file. Each time the
probe rereads the rules file, the probe checks the value of the CacheRules property
and the CacheRulesFile property. If the values of these properties are set
accordingly, the cache file is updated.

If the size of the cache file exceeds 1 GB, a new cache file is created, which is
appended with 1.

Example

If the value of the CacheRulesFile property is "$OMNIHOME/var/rulescache", the
rules file is written to this cache file until it reaches 1 GB. Then, a new cache file is
created, called $OMNIHOME/var/rulescache1. If this file exceeds 1 GB,
$OMNIHOME/var/rulescache2 is created, and so on.
Related concepts:
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.
Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.
Related reference:
“Registering target ObjectServers and setting targets for alerts” on page 47
To register an ObjectServer, and an alerts table in that ObjectServer to which you
want to send events (referred to as the target ObjectServer), use the registertarget
function. If required, you can use this function to specify several target
ObjectServers and corresponding alerts tables. Use the setdefaulttarget function
to specify a different default target ObjectServer and table. To specify an alternative
target ObjectServer that is not a default, use the settarget function.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

62 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Rules file examples
These examples show typical rules file segments.

“Example: Enhancing the Summary field”
“Example: Populating multiple fields”
“Example: Nested IF statements”
“Example: Regular expression match”
“Example: Regular expression extract” on page 64
“Example: Numeric comparisons” on page 64
“Example: Simple numeric expressions” on page 64
“Example: Strings and numerics in one expression” on page 64
“Example: Using load functions to monitor nodes” on page 64

Example: Enhancing the Summary field

This example rule tests if the $trap-type element is Link-Up. If it is, the @Summary
field is populated with a string made up of Link up on, the name of the node from
the record being generated, Port, and the value of the $ifIndex element:
if(match($trap-type,"Link-Up"))
{
@Summary = "Link up on " + @Node + " Port " + $ifIndex
}

Example: Populating multiple fields

This example rule is similar to the previous rule except that the @AlertKey and
@Severity fields are also populated:
if(match($trap-type, "Link-Up"))
{
@Summary = "Link up on " + @Node + " Port " + $ifIndex
@AlertKey = $ifIndex
@Severity = 4
}

Example: Nested IF statements

This example rule first tests if the trap has come from an Acme manager, and then
tests if it is a Link-Up. If both conditions are met, the @Summary field is populated
with the values of the @Node field and $ifIndex and $ifLocReason elements:
if(match($enterprise,"Acme"))
{
if(match($trap-type, "Link-Up"))
{
@Summary= "Acme Link Up on " + @Node + " Port " + $ifIndex +
" Reason: "+$ifLocReason
} }

Example: Regular expression match

This example rule tests for a line starting with Acme Configuration: followed by a
single digit:
if (regmatch($enterprise,"^Acme Configuration:[0-9]"))
{
@Summary="Generic configuration change for " + @Node
}

Chapter 2. Probe rules file syntax 63

Example: Regular expression extract

This example rule tests for a line starting with Acme Configuration: followed by a
single digit. If the condition is met, it extracts that single digit and places it in the
@Summary field:
if (regmatch($enterprise,"^Acme Configuration:[0-9]"))
{
@Summary="Acme error "+extract($enterprise,"^Acme Configuration:
([0-9])")+" on" + @Node
}

Example: Numeric comparisons

This example rule tests the value of an element called $freespace as a numeric
value by converting it to an integer and performing a numeric comparison:
if (int($freespace) < 1024)
{

@Summary="Less than 1024K free on drive array"
}

Example: Simple numeric expressions

This example rule creates an element called $tmpval. The value of $tmpval is
derived from the $temperature element, which is converted to an integer and then
has 20 subtracted from it. The string element $tmpval contains the result of this
calculation:
$tmpval=int($temperature)-20

Example: Strings and numerics in one expression

This example rule creates an element called $Kilobytes. The value of $Kilobytes is
derived from the $DiskSize element, which is divided by 1024 before being
converted to a string type with the letter K appended:
$Kilobytes = string(int($DiskSize)/1024) + "K"

Example: Using load functions to monitor nodes

This example shows how to measure load for each node that is generating events.
If a node is producing more than five events per second, a warning is written to
the probe log file. If more than 80 events per second are generated for all nodes
being monitored by the probe, events are sent to an alternative ObjectServer and a
warning is written to the probe log file.
declare the ObjectServers HIGHLOAD and LOWLOAD
declare the loads array
LOWLOAD = registertarget("NCOMS_LOW", "", "alerts.status")
HIGHLOAD = registertarget("NCOMS_HIGH", "", "alerts.status")
array loads;

initialize array items with the number of seconds samples may span and
number of samples to maintain.

if (match("", loads[@Node])){
loads[@Node] = "2.50"

}
if (match("" , %general_load)){

%general_load="2.50"
}
loads[@Node] = updateload(loads[@Node])
%general_load=updateload(%general_load)
if (int(getload(loads[@Node])) > 5){

64 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

log(WARN, $Node + " is creating more than 5 events per second")
}
if (int(getload(%general_load)) > 80){

log(WARN, "Probe is creating more than 80 events per second - switching to HIGHLOAD")
settarget(HIGHLOAD)

}

Related reference:
“Search and replace function” on page 53
Use the regreplace function to perform search and replace operations on strings
by using regular expressions.
“Examples of the looping function” on page 25
Use these examples of the FOREACH looping statement to help you deploy the
function in your Tivoli Netcool/OMNIbus environment.

Chapter 2. Probe rules file syntax 65

66 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 3. Probe rules file customizations

You can extend the functionality of probes by using a number of resources that are
provided in the $NCHOME/omnibus/extensions directory of your Tivoli
Netcool/OMNIbus installation. Sample SQL and probe rules files can be used to
customize any probe for event flood detection or anomalous event rates, and for
self monitoring by using statistical data that is captured and processed by the
probe.

Detecting event floods and anomalous event rates
Event floods can cause ObjectServer outages, and can lead to extended periods
where there is no visibility of network events. An unusually low or high rate of
receipt of events can also be indicative of a problem or change in the source, which
needs to be addressed.

You can configure a probe to detect an event flood condition or anomalous event
rates, and to perform remedial actions. Some usage scenarios are as follows:
v When an event flood is detected, you want to discard all further alerts until the

event rate falls back below a predefined threshold, which indicates that the
event flood is over.

v When an event flood is detected, you want to divert all further alerts to an
alternative ObjectServer until the event rate falls below a predefined threshold,
which indicates that the event flood is over.

v When an event flood is detected, you want to send an informational alert to the
ObjectServer at the start of the event flood, and another informational alert
when the event flood finishes.

v When an event flood is detected, you want to forward only major and critical
alerts to the primary ObjectServer, and to discard all other alerts or divert them
to an alternative ObjectServer until the event flood is deemed to be over.

v When an anomalous rate of receipt of events is detected, you want to send the
ObjectServer an informational alert that describes the nature of the anomalous
event rate.

When flood control is enabled, and an unusually high or low event rate is
detected, the event list can be populated with multiple events for the same issue.
These events are not cleared from the event list when the issue is resolved. You can
manually delete unwanted entries.

Two secondary rules files are provided that you can use to configure a probe to
detect when it is subject to an event flood or other anomalous event rates. These
rules files are provided in the $NCHOME/omnibus/extensions/eventflood directory.
Details of these files are as follows:
v flood.rules: This flood rules file contains the event rate calculations and logic to

detect event floods and anomalous event rates. This file calculates an average
rate of receipt of events for the probe, and then sets upper and lower event rate
thresholds as a configurable percentage of this average event rate. The current
event rate is compared to these event rate thresholds to determine whether the
probe is subject to an anomalous rate of receipt of events. The flood rules file
also uses predefined thresholds for a normal event rate and an event flood rate

© Copyright IBM Corp. 1994, 2013 67

to determine whether the probe is subject to an event flood. Optional remedial
actions are included to generate informational alerts, discard alerts, or divert
alerts.
The flood rules file also writes a stream of messages to the probe log file,
detailing its processing results. To accommodate these messages, you should
consider increasing the maximum size that is currently specified for the log file.

v flood.config.rules: This rules file defines configuration elements and their
values, which are used within the flood.rules file. These elements include
defined threshold multipliers and limits, the sampling time, the time windows
and maximum number of events allowed for computing average, flood, and
anomalous loads, and variables associated with remedial actions.

To configure the probe, you must embed updated copies of these two files within
the main probe rules file (a requirement for flood.config.rules), or one of your
secondary rules files. When the probe rules file is processed, remedial actions are
performed, as per your specifications.
Related reference:
“Flood rules file” on page 74
Use the flood.rules file to calculate event rates for detecting event floods or an
anomalous receipt of events, and to specify remedial actions. This file must be
used in conjunction with the flood configuration rules file flood.config.rules.
“Flood configuration rules file” on page 71
Use the flood.config.rules file to set the configuration variables that are used to
detect an event flood or an anomalous event rate. This file must be used in
conjunction with the flood rules file flood.rules.

Configuring probes to detect event floods and anomalous
event rates

You can configure probes to detect an event flood and anomalous event rates by
using the secondary rules files that are installed in the $NCHOME/omnibus/
extensions/eventflood directory.

Procedure

To enable these features for a probe:
1. Go to the $NCHOME/omnibus/extensions/eventflood directory.
2. Copy the flood.config.rules and flood.rules files to a preferred local or

remote directory where the primary rules file for the probe or any secondary
rules files are stored. Remove the default read-only permissions from the
flood.config.rules and flood.rules files.

3. Edit the flood.config.rules and flood.rules files as appropriate for your
requirements. You can comment out any unrequired sections. For example, if
you do not want to discard alerts during an event flood, you can comment out
the conditional statement in the flood.rules file. In the sample flood.rules
file, event rates are calculated against all event sources that send data to the
probe.

4. Use an include statement to embed the flood.config.rules file at the very
beginning of your set of rules, before any processing statements. This file
contains an array declaration and registertarget statements, which must be
defined at the start of a rules file.

Note: If you include other rules files that use the registertarget command
(for example, tivoli_eif_virtualization_pt1.rules), you must arrange the

68 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

main probe rules file such that all the registertarget instructions are placed
together at the start of the file, followed by all the array instructions, followed
by all the variable declarations. If you do not include these elements in this
order, the rules file will produce syntax errors when the probe is run.

5. Use an include statement to embed the flood.rules file (within the primary
rules file or another secondary rules file) in the section that defines your set of
rules. If you want to conditionally discard or divert alerts with particular
severity levels during the event flood, you must include the flood.rules file
towards the end of the set of rules, at a position where the severity of the alert
has already been determined.

6. After updating the probe rules file with the include statements, have the probe
re-read the rules file.

7. In the probe properties file, set the MaxLogFileSize property to a value that is
large enough to accommodate the extra log file messages that are generated
when the flood.rules file is processed.

Related concepts:
“Properties file” on page 5
Probe properties define the environment in which the probe runs.
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.
Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.
Related reference:
“Flood rules file” on page 74
Use the flood.rules file to calculate event rates for detecting event floods or an
anomalous receipt of events, and to specify remedial actions. This file must be
used in conjunction with the flood configuration rules file flood.config.rules.
“Flood configuration rules file” on page 71
Use the flood.config.rules file to set the configuration variables that are used to
detect an event flood or an anomalous event rate. This file must be used in
conjunction with the flood rules file flood.rules.
“Embedding multiple rules files in a rules file” on page 30
You can include a number of secondary rules files in your main rules file by using
the include statement.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Chapter 3. Probe rules file customizations 69

Protecting the ObjectServer against event floods
Configure event flood control so that the ObjectServer can detect when it is at risk
of being overloaded by connected clients and send a message to the clients to
instruct them to take remedial action.

About this task

Two metrics are used to calculate the load on the ObjectServer from connected
clients. An average is calculated over a specified time period and thresholds are
applied to determine whether the ObjectServer should activate flood control. By
default, for each metric, the average is calculated every 60 seconds, over a 300
second period. If the average is in excess of the threshold for both metrics then
flood control is invoked and an event is raised. These metrics, thresholds, and
default values are described in the following table.

Table 18. Metrics and thresholds used to determine when to activate event flood control

Metric Threshold Description

Time that is spent by the
ObjectServer processing
requests from clients

Time that is spent over a
60-second period. The
default is 40 seconds.

To calculate the value, the
catalog.profiles table is read.

Time that is spent by the
ObjectServer in triggers.

Time that is spent over a
60-second period. The
default is 30 seconds.

To calculate the value, the
catalog.trigger_stats table is
read.

By default, flood control mode is deactivated again at the point when processing
time falls below both defined thresholds, and flood control has been activated for
300 seconds. A resolution event is raised when flood control is deactivated.

All default values are configurable.

Configuration for event flood protection is supplied in the $NCHOME/omnibus/
extensions/eventflood/flood_control.sql file. To configure event flood
protection, apply this file to the ObjectServer schema. The configuration contains
the default values.

Procedure

To configure event flood control:
1. Change to the $NCHOME/omnibus/extensions/eventflood directory and copy the

flood_control.sql file to a preferred location.
2. To change the default values for event flood protection, open the file and edit

the content at the points that are described in the following table.

Table 19. Default values in the flood_control.sql file to edit to change flood control
protection values

Code section Description

set window_size = 5; The time, in minutes, over which the
average values are calculated for the metrics.
The default is 5.

if(avg_trigger_per >= 0.5) The threshold, expressed as a fraction of a
minute, for time that is spent in triggers.
The default is 0.5, that is, 30 seconds in a
minute.

70 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 19. Default values in the flood_control.sql file to edit to change flood control
protection values (continued)

Code section Description

if(avg_client_per >= 0.66) The threshold, expressed as a fraction of a
minute, for time that spent processing SQL
requests from clients. The default is 0.66,
that is, 40 seconds in a minute.

if(elapsed >= 300) The time, in seconds that must elapse after
the flood protection values fell below the
defined thresholds before flood protection
mode is deactivated.

’ObjectServer ’ + getservername() + ’ is
currently in flood’,

The text for the event that is raised when
the ObjectServer enters flood control. Do not
change the ’ + getservername() + ’
element.

’ObjectServer ’ + getservername() + ’ is
ending flood control’,

The text for the resolution event that is
raised when flood control is deactivated.

3. Apply the configuration for event flood protection to the ObjectServer schema
by running the SQL interactive interface and issuing the following command:

UNIX Linux $NCHOME/omnibus/bin/nco_sql -user username -password
password -server servername < directory_path/flood_control.sql

Windows "%NCHOME%\omnibus\bin\isql" -U username -P password -S
servername -i directory_path/flood_control.sql

Where username is a valid user name, password is the corresponding password,
servername is the name of the ObjectServer, and directory_path is the fully
qualified directory path to the .sql file.

Flood configuration rules file
Use the flood.config.rules file to set the configuration variables that are used to
detect an event flood or an anomalous event rate. This file must be used in
conjunction with the flood rules file flood.rules.

The entries in the flood.config.rules file, and the actions that you can take to
amend the values, are described in the following table. The entries are shown in
the order in which they are defined in the file, starting from the top.

Table 20. flood.config.rules file entries

Entry Description Action

DefaultOS =
registertarget(%Server,
%ServerBackup,
"alerts.status")

This statement registers the default ObjectServer
(and backup ObjectServer, if one is configured)
as a target for alerts. In the flood rules file, this
is the target ObjectServer to which an
informational alert is sent when the current
event rate from probe sources is unusually high
or low, or when an event flood starts and ends.
The default table to which the alert is sent is
alerts.status.

Change the alerts table name to
a preferred valid name.

Chapter 3. Probe rules file customizations 71

Table 20. flood.config.rules file entries (continued)

Entry Description Action

#FloodEventOS =
registertarget("NCOMS_BK",
"", "alerts.status")

This commented-out line registers an
NCOMS_BK backup ObjectServer. In the flood
rules file, this is an alternative target
ObjectServer to which alerts with particular
severity levels can be diverted during an event
flood.

Uncomment this line if you
want to divert alerts to this
ObjectServer when an event
flood is detected. Change the
ObjectServer name and the
alerts table name to preferred
valid names.

array event_rate_array This array is defined to hold all the event rate
calculation variables. These variables are used
throughout the flood rules file.

N/A

$average_event_rate_time_
window

$average_event_rate_max_
sample_size

These elements store values that are used to
calculate what is considered to be the average
(or normal) rate of receipt of events:

v The $average_event_rate_time_window
element defines the maximum time window
(in seconds) for which events are kept. This
value depicts a rolling time window, which is
updated by calling the updateload function.
The $average_event_rate_time_window
element also sets the training period, which is
the length of time the probe runs to
determine the average or normal event rate.

v The $average_event_rate_max_sample_size
element defines the maximum number of
events to keep during the average event rate
time window.

In the flood rules file, these elements are used to
capture the event count in the last n seconds
before the current time, and to calculate the
average event rate during this period.

Change the default values as
appropriate for your
requirements.

$flood_detection_time_window

$flood_detection_max_sample_
size

These elements store values that are used to
calculate the event flood detection rate, in order
to determine whether an event flood is
imminent:

v The $flood_detection_time_window element
defines the maximum time window (in
seconds) for which events are kept. This value
depicts a rolling time window, which is
updated by calling the updateload function.

v The $flood_detection_max_sample_size
element defines the maximum number of
events to keep during this period.

In the flood rules file, these elements are used to
capture the event count in the last n seconds
before the current time, and to calculate the
flood detection rate during this period.

Change the default values as
appropriate for your
requirements.

$flood_detection_startup_time This element defines the number of seconds
over which the probe runs before event flood
detection can begin.

Set a value.

72 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 20. flood.config.rules file entries (continued)

Entry Description Action

$anomaly_detection_time_
window

$anomaly_detection_max_
sample_size

These elements store values that are used to
calculate the rate of receipt of events for
detecting an anomalous flow:

v The $anomaly_detection_time_window element
defines the maximum time window (in
seconds) for which events are kept. This value
depicts a rolling time window, which is
updated by calling the updateload function.

v The $anomaly_detection_max_sample_size
element defines the maximum number of
events to keep during this period.

In the flood rules file, these elements are used to
capture the event count in the last n seconds
before the current time, and to calculate the
event rate during this period.

Change the default values as
appropriate for your
requirements.

$flood_detection_event_rate_
flood_threshold

$flood_detection_event_rate_
normal_threshold

These elements store values that are used to
specify event rate thresholds for detecting an
event flood or a normal event rate.

If the number of events received per second
exceeds the value specified for the
$flood_detection_event_rate_flood_threshold
element, event flood detection is triggered.

If the number of events received per second is
less than the value specified for the
$flood_detection_event_rate_normal_threshold
element, a normal event rate is assumed.

Change the default values as
appropriate for your
requirements.

Ensure that the value of
$flood_detection_event_rate_
normal_threshold is lower than
$flood_detection_event_rate_
flood_threshold.

$lower_event_rate_threshold_
multiplier

$upper_event_rate_threshold_
multiplier

The $lower_event_rate_threshold_multiplier
element sets the multiplier value that is used to
calculate the lower event rate threshold for
detecting an anomalous event rate.

The $upper_event_rate_threshold_multiplier
element sets the multiplier value that is used to
calculate the upper event rate threshold for
detecting an anomalous event rate.

In the flood rules file, the average event rate is
multiplied by these values to set the thresholds
for determining unusually low or unusually
high event rates.

Change the default values as
appropriate for your
requirements.

$discard_event_during_flood This element defines whether an alert is
discarded during an event flood. A value of 1
equates to TRUE and a value of 0 equates to
FALSE.

In the flood rules file, if the
$discard_event_during_flood value is 1 and the
alert is of a lower severity than the value
specified for $forward_event_minimum_severity,
the alert will be discarded.

Change the default value as
appropriate for your
requirements.

Chapter 3. Probe rules file customizations 73

Table 20. flood.config.rules file entries (continued)

Entry Description Action

$divert_event_during_flood This element defines whether an alert is
diverted to an alternative ObjectServer during
an event flood. A value of 1 equates to TRUE
and a value of 0 equates to FALSE.

In the flood rules file, if the value of
$divert_event_during_flood is 1 and the alert is
of a lower severity than the value specified for
$forward_event_minimum_severity, the alert will
be diverted.

To divert an alert of a particular
severity, ensure that the
$divert_event_during_flood
value is set to 1 in the
flood.config.rules file.

Also ensure that the
registertarget statement with
the target of FloodEventOS
(defined at the top of the file) is
uncommented and configured
with the appropriate
ObjectServer name and table.

$forward_event_minimum_
severity

This element is set to a value of 4 to indicate
that events with a severity of major or critical
should be forwarded to the primary
ObjectServer during an event flood.

In the flood rules file, this element is used in the
IF condition that defines whether alert is
discarded or diverted during an event flood.

Accept or change the default
value as appropriate for your
requirements.

Related reference:
“Flood rules file”
Use the flood.rules file to calculate event rates for detecting event floods or an
anomalous receipt of events, and to specify remedial actions. This file must be
used in conjunction with the flood configuration rules file flood.config.rules.

Flood rules file
Use the flood.rules file to calculate event rates for detecting event floods or an
anomalous receipt of events, and to specify remedial actions. This file must be
used in conjunction with the flood configuration rules file flood.config.rules.

The logic in the flood.rules file is described here to help you understand the
sample configuration provided.

The first time that the probe processes the rules file, the array (event_rate_array)
is initialized, and event rate array variables are used to:
v Set the rolling time window and the maximum number of events that can be

used for calculating an average load, a flood detection load, and an anomaly
detection load. The loads are defined in the format
time_window_in_seconds.max_number_of_samples by using elements defined in the
flood.config.rules file.

v Set the event rate mode to normal.
v Store the current timestamp as the startup time for the probe.
v Indicate that the average event rate is not yet calculated.

Anomalous event rate calculations

During the first $average_event_rate_time_window seconds (default 10 seconds)
after the probe starts, an event count is maintained in order to calculate an average
event rate for the probe.

74 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

At the end of this period, upper and lower event rate thresholds are calculated as
percentages of the average event rate. The
$upper_event_rate_threshold_multiplier and
$lower_event_rate_threshold_multiplier elements, which are defined in the
flood.config.rules file, are used to calculate these thresholds. After the average
rate is determined, the probe periodically checks the current event rate, and
compares it against the upper and lower event rate thresholds as follows:
1. The updateload function is used to capture the time window (prior to the

current time) and the event count that are used for determining the current
event rate for anomalous events. Note that a default time window of one
minute, as set by the $anomaly_detection_time_window element, is used.

2. The getload function is used to calculate the current event rate as events per
second.

3. The current event rate is compared to the upper and lower event rate
thresholds to determine whether the probe is subject to an anomalous rate of
receipt of events.

If an unusually low or unusually high number of events is detected, the genevent
function is used to generate and send informational alerts to the target
ObjectServer that is registered in the flood.config.rules file as DefaultOS.

As an example, suppose 200 events are received within the average event rate time
window, resulting in an average event rate of 20 events per second. Also assume
that the $upper_event_rate_threshold_multiplier element is set to 5, and the
$lower_event_rate_threshold_multiplier element is set to 0.1 in the
flood.config.rules file.

The upper event rate threshold can be calculated as follows:

average event rate * 5 = 100 events per second

The lower event rate threshold can be calculated as follows:

average event rate * 0.1 = 2 events per second

If the current event rate is calculated as 120 events per second, the probe will
generate and send an alert to the target DefaultOS ObjectServer, with details about
the high event rate. If the current event rate is calculated as 1 event per second, the
probe will generate and send an alert to the target DefaultOS ObjectServer, with
details about the low event rate.

Flood detection calculations

When the probe starts, an exclusion period is observed for flood detection. This
period is of a fixed duration from the probe startup time, and is set by the
$flood_detection_startup_time element in the flood.config.rules file.

When this period ends, the updateload function is used to capture the time
window (prior to the current time) and the event count that are used for
determining the current event rate for flood detection. The getload function is then
used to calculate the current event rate as events per second. The current event
rate is compared to the event rate thresholds, which are defined in the
flood.config.rules file, for an event flood and for a normal rate of events. The
event mode is then set to either flood or normal, as appropriate.

Chapter 3. Probe rules file customizations 75

If the current event mode is flood, the probe determines whether the event flood
has just started, is in progress, or has just ended, and takes the appropriate action:
v The genevent function is used to generate and send an informational alert to the

target ObjectServer that is registered in the flood.config.rules file as
DefaultOS. This informational alert either indicates that an event flood has just
started or has just ended, and includes details about the event flood.

v While the event flood is in progress, alerts can be discarded if their severity is
below a defined minimum level. The default configuration discards alerts with a
severity value that is less than 4 (major).

v While the event flood is in progress, alerts can alternatively be diverted to an
ObjectServer when the alert severity is below a defined minimum level. This
ObjectServer is registered in the flood.config.rules file as the target
(FloodEventOS) for events during an event flood. The default configuration
diverts events with a severity value that is less than 4 (major).

Message logging

Various messages are written to the log file as the flood rules file is processed.
Details recorded include:
v The probe startup timestamp
v The average event rate
v The event loads
v Unusually high or low event rates
v Flood detection event rates, flood status, remedial actions, event count, and

flood duration
Related reference:
“Flood configuration rules file” on page 71
Use the flood.config.rules file to set the configuration variables that are used to
detect an event flood or an anomalous event rate. This file must be used in
conjunction with the flood rules file flood.rules.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.
“Sending alerts to alternative ObjectServers and tables” on page 47
The registertarget, genevent, settarget, and setdefaulttarget functions enable
you to send alerts to one or more ObjectServers, and to define the distribution of
alerts across the ObjectServers.

Enabling self monitoring of probes
You can configure probes to generate ProbeWatch Heartbeat events as a
self-monitoring mechanism to help monitor performance, diagnose performance
problems, and highlight possible performance bottlenecks before they begin to
affect the system.

A ProbeWatch Heartbeat event is generated by the probe, and is not triggered by
an event (or absence of events) from the managed entity. The ProbeWatch
Heartbeat event is generated at a configurable interval, which is controlled by the
ProbeWatchHeartbeatInterval property. This interval is set to 60 seconds by
default. A ProbeWatch Heartbeat event can either be used as a heartbeat to confirm
that the probe is still functioning, or can be used to transport probe statistics:
v The presence of a regularly-occurring ProbeWatch Heartbeat event enables you

to assess whether a probe is inactive due to a lack of incoming events from its

76 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

source, due to probe failure, or due to a communications failure with the
ObjectServer. The value that you specify for the ProbeWatchHeartbeatInterval
property defines the maximum time over which the probe can remain silent
before an indication is required that the probe is still functioning. If no other
events have been sent in the previous ProbeWatchHeartbeatInterval time
window, the probe indicates that it is still active (but just not receiving any
events) by sending a ProbeWatch Heartbeat event to the ObjectServer. The
Summary field of this ProbeWatch Heartbeat event is populated with the
following text: Heartbeat ...

v A ProbeWatch Heartbeat event also acts as a carrier for statistical data for
probes, such as the processing throughput of probes, and CPU and memory
resource utilization. Individual probes can capture usage and resource
information, which is then manipulated within the rules file to calculate metrics
by using a set of dedicated properties. These metrics can be transferred into the
ObjectServer either in one single ProbeWatch Heartbeat event by using nvp_add
functions to specify name-value pairs of extended attributes, or within multiple
ProbeWatch Heartbeat events that are generated using the genevent function.
The generated events are forwarded to the ObjectServer at the interval defined
by the ProbeWatchHeartbeatInterval property.

The metrics provided in the ProbeWatch Heartbeat events can be analyzed to
identify how the different components of the system are running, and to identify
potential problems before performance begins to degrade. The data can also be
collated for use in reports and charts that can be used to help demonstrate how
much of a return on investment is being made.
Related reference:
“ProbeWatch and TSMWatch messages” on page 208
In some situations, a probe or TSM generates events of its own. These events can
provide information (such as startup or shutdown messages) or identify problems.

Configuration setup for self monitoring of probes
Probes can be configured to generate statistical data that can be used to assess
system performance and to help calculate return on investment.

The following figure shows the configuration setup for probe self monitoring.

Chapter 3. Probe rules file customizations 77

The configuration flow is as follows:

�1� Usage and resource information is captured together with raw data that is
sent to the probe.

�2� The probe processes the usage and resource information in order to
calculate performance metrics, and to generate ProbeWatch Heartbeat
events that are populated with these metrics. The probe also processes the
raw data in order to generate generic (standard) events.

Both sets of events are forwarded to the ObjectServer.

�3� ObjectServer automations are used to produce a basic textual report that
summarizes the statistical information generated by the probe .

�4� and �5�
The generic event data and ProbeWatch Heartbeat events can optionally be
exported from the ObjectServer into Tivoli Data Warehouse by using a
relational database management system (RDBMS) gateway. These metrics
can then be used for subsequent reporting in Tivoli Common Reporting.

Note: These steps (4 and 5) are outside the scope of the probe
self-monitoring functionality provided by Tivoli Netcool/OMNIbus.
Integration with IBM Tivoli Monitoring (which provides Tivoli Data
Warehouse) and additional configuration will be required for this
additional reporting.

2

Event
Data

Metric
Data

3

4

5

Probe ObjectServer

1

Tivoli
Data

Warehouse

RDBMS
Gateway

Event
Data

Metric
Data

Metric
Data

Raw Data

snmp-trap **
sequence I 4305
receive time U
8290009 36
version 10 com-
munity S public
enterprise
0 1.3.6

Metric Report
and

Raw Data File

Figure 3. Configuration and data flow for probe self monitoring

78 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Tivoli Netcool/OMNIbus configuration files for the self
monitoring of probes

When you install Tivoli Netcool/OMNIbus, a number of configuration files are
provided for configuring probes to collect and process statistical data for self
monitoring. Samples of these configuration files are available in the
$NCHOME/omnibus/extensions/roi directory.

Details of the configuration files are as follows:
v probestats.sql file: This file provides a set of automations to capture the

incoming statistical data collected for a probe, and to log the data to a file.
Tables are also created in the ObjectServer to store the probe metrics and to
record the last reporting period for the data. Note that the probe metrics are
stored in the specially-created master.probestats table, rather than the
alerts.status table.
The log file that is created is similar to the profiling log, and includes:
– Individual metrics for each connected probe; for example, the number of

events processed, generated, and discarded since the last reporting period
– A set of collated metrics; for example, the total number of alerts.details and

alerts.journal inserts since the last reporting period
You can review this SQL file to familiarize yourself with the potential changes
that will be applied to the ObjectServer.

v probewatch.include file: This customized rules file is provided for use with
probes, and must be embedded within the main rules file for the probe. The
probewatch.include file expands on the original default ProbeWatch-specific
rules. This file contains new CASE statements for two additional ProbeWatch
messages and for the ProbeWatch Heartbeat events, which act as a carrier for
statistical data.
The probewatch.include rules file is generic to all probes. You can customize
and share this file between multiple (or all) probes to centralize the
administration of ProbeWatch Heartbeat events.

v Omnibus_TDW_Reports_ROI.zip file: This archive file contains a set of sample
reports that require user customization, and integration with Tivoli Data
Warehouse and Tivoli Common Reporting. Working knowledge of these
components is required to support this configuration.

A number of statistical properties are also added to the configuration for probes.
These properties are used to collect usage and resource information that is specific
to each probe. The statistical properties are different from the standard probe
properties because they cannot be set to a meaningful value in the properties file,
and they cannot be run as command-line options. These property names are all
prefixed with OplStats, and are displayed in the output obtained when the probe
is run with the -dumpprops command-line option.

The statistical properties are as follows:

Table 21. Statistical properties for probes

Property Description

OplStatsCPUTimeSec The CPU time consumed by the probe in seconds.

Example: If 6.002345 seconds CPU time has been
consumed by the probe, OplStatsCPUTimeSec = 6

Chapter 3. Probe rules file customizations 79

Table 21. Statistical properties for probes (continued)

Property Description

OplStatsCPUTimeUSec The subsecond component of CPU time consumed by
the probe, in millionths of a second.

Example: If 6.002345 seconds CPU time has been
consumed by the probe, OplStatsCPUTimeUSec = 2345

OplStatsRulesFileTimeSec The time spent processing rules in seconds.

Example: If 4.372700 seconds is spent processing
rules, OplStatsRulesFileTimeSec = 4

OplStatsRulesFileTimeUSec The subsecond component of time spent processing
rules, in millionths of a second.

Example: If 4.372700 seconds is spent processing
rules, OplStatsRulesFileTimeUSec = 372700

OplStatsProbeStartTime The time (in UNIX epoch time) at which the probe
was started.

OplStatsMemoryInUse The memory footprint (in KB) of the probe.

OplStatsNumberEvents The number of events (including ProbeWatch events)
that the probe has received from its event source
since the probe started.

OplStatsNumberEventsDiscarded The number of events that are discarded after rules
processing.

OplStatsNumberEventsGenerated The number of events that are generated using the
genevent function in the rules file.

Configuring probes for self monitoring
As a self-monitoring mechanism, you can configure a probe to collect statistical
data about the amount of memory used for various processing operations, and the
number of events received, discarded, and generated.

About this task

To configure a probe to collect and process statistical data:

Procedure
1. Go to the $NCHOME/omnibus/extensions/roi directory.
2. Copy the probestats.sql file to the $NCHOME/omnibus/etc directory, or another

preferred location. Apply the ProbeWatch Heartbeat customization to the
ObjectServer schema by running the following command from the SQL
interactive interface:

UNIX Linux $NCHOME/omnibus/bin/nco_sql -user username -password
password -server servername < directory_path/probestats.sql

Windows "%NCHOME%\omnibus\bin\isql" -U username -P password -S
servername -i directory_path\probestats.sql

In these commands, username is a valid user name, password is the
corresponding password, servername is the name of the ObjectServer, and
directory_path is the fully-qualified directory path to the .sql file.
The probestats.sql file adds a set of tables and triggers to the ObjectServer.

80 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

3. Copy the $NCHOME/omnibus/extensions/roi/probewatch.include file to a
preferred local or remote directory where the main rules file or any secondary
rules files for the probe is stored. This file is designed to replace the logic in the
ProbeWatch section of your primary rules file, which is typically coded as
follows:
if(match(@Manager, "ProbeWatch"))
{

switch(@Summary)
{
case "Running ...":

@Severity = 1
@AlertGroup = "probestat"
@Type = 2

case "Going Down ...":
@Severity = 5
@AlertGroup = "probestat"
@Type = 1

default:
@Severity = 1

}
@AlertKey = @Agent
@Summary = @Agent + " probe on " + @Node + ": " + @Summary

}
else
{

...probe specific rules...
}

The code shown in bold text needs to be replaced with an include statement
that enables you to embed the contents of the probewatch.include file, as
instructed in step 5 on page 83.

4. Remove the default read-only permissions from your copy of the
probewatch.include file and review the file to familiarize yourself with its
contents. Then edit the file as follows:
v Update any of the elements at the top of the file to define how a ProbeWatch

Heartbeat event should be processed. Use the number sign (#) to comment
out any elements that you do not require. The processing logic for these
elements is coded within the case "Heartbeat ..." statement in the
ProbeWatch section of the file.

Table 22. Elements for ProbeWatch Heartbeat events

Element Action

$OplHeartbeat_discard Set this value to 1 if you want to discard the
ProbeWatch Heartbeat event.

Set this value to 0 if you want to forward
the ProbeWatch Heartbeat event to the
ObjectServer.

$OplHeartbeat_populate_master_probestats Set this value to 1 to enable a new probe
metrics event to be generated by using the
genevent function, which is defined within
the case "Heartbeat ..." statement. The
event data consists a set of OplStats probe
metrics, which are forwarded to the
master.probestats table that was created
when you ran the probestats.sql script.

Set this value to 0 if you do not want to
generate this event for insertion into the
master.probestats table.

Chapter 3. Probe rules file customizations 81

Table 22. Elements for ProbeWatch Heartbeat events (continued)

Element Action

$OplHeartbeat_write_to_probe_log Set this value to 1 if you want to record the
OplStats metrics in the probe log file. Details
are logged at the INFO level. The metric
details that are logged are defined in the
case "Heartbeat ..." statement.

Set this value to 0 if you do not want to
record the metrics in the log file.

$OplHeartbeat_generate_threshold_events Set this value to 1 if you want to generate
threshold events that indicate when a
particular probe metric violates a defined
threshold. By default, no code is provided
for threshold events within this rules file
because individual preferences can vary
widely. If you require threshold events, you
must first decide which thresholds you want
to monitor. Then, within the case
"Heartbeat ..." statement, provide the code
for generating threshold events.

v In addition to the standard CASE statements, the file includes the following
two CASE statements, which contain the logic for two new ProbeWatch
events that provide feedback when a probe re-reads its rules files on receipt
of a SIGHUP signal. The first CASE statement applies when the re-read was
successful:
case "Rules file reread upon SIGHUP successful ...":

@Severity = 1
@AlertGroup = "rules"
@Type = 2

The second CASE statement applies when the re-read was unsuccessful. This
section of code includes two elements ($msg and $file), where $msg is the
error message as reported in the probe log file, and $file is the name of the
file where the error exists.
case "Rules file reread upon SIGHUP failed ...":

@Severity = 4
@AlertGroup = "rules"
@Type = 1
if(exists($msg))
{

@Summary = @Summary + "("+$msg+")"
}
if(exists($file))
{

@Summary = @Summary + " in file "+$file
}

If you do not require these, use the discard function to prevent them from
being sent to the ObjectServer.

v The final CASE statement (case "Heartbeat ...") contains a set of
conditional statements for calculating the probe metrics and processing the
data. IF statements are provided with the logic to discard events and to write
the probe metrics to a log file. Some user input is also required:

82 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 23. case "Heartbeat ..." sections that require user input

Locate the section of code that begins with the following lines:

if(int($OplHeartbeat_populate_master_probestats) == 1)
{

log(DEBUG, "HEARTBEAT - SENDING PROBESTATS TO MASTER.PROBESTATS")
...

This section of code contains a genevent statement with a DefaultOS placeholder that
identifies a target, registered ObjectServer. This target must be defined in a registertarget
statement in the main rules file. Replace this placeholder with the target ObjectServer to
which you want to send events.

Locate the section of code that begins with the following lines:

if(int($OplHeartbeat_generate_threshold_events) == 1) {
#
Area to generate user defined threshold events using genevent
...

If you set the $OplHeartbeat_generate_threshold_events element to 1 at the top of the file,
you must enter the code for the type of threshold events that you want to monitor.

You can ignore this section if you do not require threshold events.

v If you have modified the ProbeWatch section of your main rules file
(typically $NCHOME/omnibus/probes/arch/probename.rules), you must make
the same modifications to the probewatch.include file.

v If the main rules file includes additional ProbeWatch sections that contain
code for different ProbeWatch messages that are not covered in the
probewatch.include file, copy this additional code into the
probewatch.include file.

Tip: After making all the changes to the probewatch.include file, run the Probe
Rules Syntax Checker (nco_p_syntax) to test the syntax of the rules file.

5. Embed the updated probewatch.include file in your main probe rules file by
using an include statement. Ensure that the path in the include statement
points to the location where the updated probewatch.include file is stored.
if(match(@Manager, "ProbeWatch"))
{

include "directory_path/probewatch.include"
}
else
{

...probe specific rules...
}

6. Specify the interval, in seconds at which probe heartbeat messages are
generated, by setting ProbeWatchHeartbeatInterval in the probe properties file.
v Set a positive number to generate the events
v Set 0 (zero) or a negative number for no events

7. Ensure that the stats_triggers trigger group is enabled. The triggers that are
added by the probestats.sql file are assigned to this trigger group, which
must be enabled for the triggers to run. You can enable the trigger group by
using Netcool/OMNIbus Administrator or the ALTER TRIGGER GROUP
command, as described in the IBM Tivoli Netcool/OMNIbus Administration Guide.

8. Enable the probe_statistics_cleanup trigger, which by default is set to delete
probe statistics that are over an hour old. You can change this default period to
increase the length of time for which statistics are stored.

9. Start the probe.

Chapter 3. Probe rules file customizations 83

The probe metrics that are collected are recorded in the log file
$NCHOME/omnibus/log/server_name_probestats.log, where server_name is the
ObjectServer name.

Related concepts:
Chapter 4, “Running probes,” on page 85
When running a probe, you can specify properties in a properties file or options at
the command line to configure settings for the probe.
“Properties file” on page 5
Probe properties define the environment in which the probe runs.
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.
Related tasks:
“Testing rules files” on page 58
You can test the syntax of a rules file by using the Probe Rules Syntax Checker,
nco_p_syntax. This is more efficient than running the probe to test that the syntax
of the rules file is correct.
Related reference:
“Sending alerts to alternative ObjectServers and tables” on page 47
The registertarget, genevent, settarget, and setdefaulttarget functions enable
you to send alerts to one or more ObjectServers, and to define the distribution of
alerts across the ObjectServers.
“Embedding multiple rules files in a rules file” on page 30
You can include a number of secondary rules files in your main rules file by using
the include statement.
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

84 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 4. Running probes

When running a probe, you can specify properties in a properties file or options at
the command line to configure settings for the probe.

A probe has default values for each property. In an unedited properties file, all
properties are listed with their default values, commented out with a hash symbol
(#) at the beginning of the line.

You can edit the properties file before running the probe, or while the probe is
running. If you edit the properties file while the probe is running, the changes that
you make take effect the next time you start the probe. You can edit probe
property values using a text editor. To override a default value, you must change
the setting in the properties file and then remove the hash symbol.

If you change a property setting on the command line when starting a probe, this
overrides both the default value and the setting in the properties file. To simplify
the command that you type to run the probe, add as many properties as possible
to the properties file instead of using the command-line options.

When running a probe, you must also set up your rules file to define how the
probe should process event data. You can edit the rules file before running the
probe, or while the probe is running. If you edit the rules file while the probe is
running, you must force the probe to re-read the rules file, for the changes to take
effect. You can edit the rules file using a text editor.

Tip: Always read the publication that is specific to the probe you are running for
additional configuration information.
Related concepts:
“Properties file” on page 5
Probe properties define the environment in which the probe runs.
“Rules file” on page 7
The rules file defines how the probe processes event data to create a meaningful
alert. For each alert, the rules file also creates an identifier that uniquely identifies
the problem source.
Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.

© Copyright IBM Corp. 1994, 2013 85

Use of OMNIHOME and NCHOME environment variables
Tivoli Netcool/OMNIbus V7.0 (and earlier) uses the OMNIHOME environment
variable in many configuration files. To use these files on Tivoli Netcool/OMNIbus
V7.1 (and later), replace occurrences of the OMNIHOME environment variable with
NCHOME/omnibus.

On UNIX and Linux operating systems, replace $OMNIHOME with $NCHOME/omnibus.

On Windows operating systems, replace %OMNIHOME% with %NCHOME%\omnibus.

Running probes on UNIX
On UNIX, you can run probes from the command line, or under process control.

Before you begin

After you install a probe, configure the properties and rules files to fit your
environment. For example, if you are using a log file probe such as the HTTP
Common Log Format Probe, set the LogFile property, so that the probe can
connect to the event source.

About this task

Important: Use process control to manage probes. For further information about
setting up a probe to run under process control, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.

Procedure

To run a probe, enter the following command:
$OMNIHOME/probes/nco_p_probename [-option [value] ...]
In this command, the probename is the abbreviated name of the probe that you
want to run. The -option variable is a command-line option, and value is the value
that you are setting the option to. Not every option requires you to specify a value.
For example, to run the Sybase Probe in raw capture mode, enter:
$NCHOME/omnibus/probes/nco_p_sybase -raw.
The following command-line options are useful:
v Specify the -name command-line option to determines the name used for the

probe files described in the following table:

Table 24. Names of probe files

Type of file Path and file name

Properties file $NCHOME/omnibus/probes/arch/nco_p_probename.props

Rules file $NCHOME/omnibus/probes/arch/nco_p_probename.rules

Rules cache file When the CacheRules property is set to 1, the rules file is
cached to the file specified by the CacheRulesFile property.
The default location is $NCHOME/omnibus/var/
probename.rulescache.

Store-and-forward file $NCHOME/omnibus/var/probename.store.server

Message Log file $NCHOME/omnibus/log/probename.log

In these paths, arch represents the name of the operating system on which the
probe is installed; for example, solaris2 when running on a Solaris system.

86 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

v Specify the -propsfile command-line option to have the value of the option
override the name setting for the properties file.

v If you need to reduce the number of individual connections to the ObjectServer,
you can connect multiple probes through a proxy server. Use the -server
command-line option and specify the name of the proxy server. For more
information about the proxy server, see the IBM Tivoli Netcool/OMNIbus
Administration Guide.

Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Running probes as SUID root
You can run probes as SUID (SETUID) root to use root privileges with a nonroot
probe user account. This configuration is normally only required by the SNMP
Probe (nco_p_mttrapd) when it must bind to a host port below 1024. You might
also want to run the Ping Probe (nco_p_ping) as SUID root sometimes.

About this task

The following procedure shows you how to configure SUID root for the SNMP
Probe. The probe can be run as SUID root without compromising security because
it drops its root privileges after opening the SNMP session and before the
Netcool/OMNIbus probe library starts.

Procedure
1. As the root user, run the following command from the $NCHOME/omnibus/

probes/arch directory to make root the owner of the probe binary:
chown root nco_p_mttrapd

On 64-bit systems, run the chown command from the $NCHOME/omnibus/
platform/arch/probes64 directory.

2. As the root user, run the following command from the same directory to enable
the probe binary to be run as SUID root:
chmod +s nco_p_mttrapd

Results

You can now run the probe from the $NCHOME/omnibus/probes directory as SUID
root.

For more information about the SNMP Probe, see the probe reference guide.

Running probes on Windows
On Windows, you can run probes as console applications, as Windows services, or
under process control.

About this task

Probes are installed as console applications by default.

For further information about setting up a probe to run under process control, see
the IBM Tivoli Netcool/OMNIbus Administration Guide.

Chapter 4. Running probes 87

Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Running a probe as a console application
Run a probe as a console application from the command line.

About this task

To run a probe as a console application, enter the following command from the
probe directory:

nco_p_probename [-option [value] ...]

In this command, probename is the abbreviated name of the probe that you want to
run. The -option variable is a command-line option, and value is the value that you
are setting the option to. Not every option requires you to specify a value.

Additional command-line options are available for the Windows version of each
probe. To display these, enter the following command:

nco_p_probename -?

The Windows-specific command-line options are described in the following table.

Table 25. Windows-specific probe command-line options

Command-line option Description

-install This option installs the probe as a Windows service.

-noauto This option is used with the -install option. It
disables automatic startup for the probe running as a
service. If this option is used, the probe is not started
automatically when the machine boots.

-remove This option removes a probe that is installed as a
service. It is the opposite of the -install command.

-group string This option is used with the -depend command-line
option. You can group all the probes together under
the same group name. You can then force that group
to be dependent on another service.

-depend srv @grp ... This option specifies other services or groups that the
probe is dependent on. If you use this option, the
probe will not start until the services (srv) and groups
(@grp) specified with this option have been run.

-cmdLine "-option value..." This option specifies one or more command-line
options to be set each time the probe service is
restarted.

88 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related tasks:
“Running a probe as a service”
To run a probe as a service, use the Windows /INSTALL command-line option when
running the probe with the nco_p_probename command, where probename uniquely
identifies the probe.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Running a probe as a service
To run a probe as a service, use the Windows /INSTALL command-line option when
running the probe with the nco_p_probename command, where probename uniquely
identifies the probe.

About this task

After setting up the service, you can configure how the probe starts by defining
the Windows services settings as follows:

Procedure
1. Click Start > Control Panel. The Control Panel opens.
2. Double-click the Admin Tools icon, then double-click the Services icon. The

Services window opens.
The Services window lists all of the Windows services currently installed on
your machine. All Tivoli Netcool/OMNIbus service names start with NCO.

3. Use the Services window to start and stop Windows services. Indicate whether
the service is started automatically when the machine is booted by clicking the
Startup button.

Note: If the ObjectServer and the probe are started as services, the probe may
start first. The probe will not be able to connect to the ObjectServer until the
ObjectServer is running.

Results
Related tasks:
“Running a probe as a console application” on page 88
Run a probe as a console application from the command line.

Chapter 4. Running probes 89

90 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 5. Remotely administering probes

You can use an HTTP interface that runs over an HTTP or HTTPS server contained
in the standard probe C library (libOpl) to remotely monitor and manage probes.
This functionality can be used against all probes that are compatible with Tivoli
Netcool/OMNIbus V7.4. A common URI is provided that contains resources for
performing administration tasks.

About this task

Utilities are provided for sending HTTP requests to the probe. Probes can receive
HTTP requests over HTTP ports and HTTPS ports. Both ports are disabled by
default. Additional configuration is required for HTTPS.

Probes can register their own URIs to expose entities specific to a particular probe.
These URIs can be used to trigger actions against the device or system that the
probe is connected to or communicating with. For more information, see the
documentation for the individual probe.

Enabling remote administration of probes
The HTTP interface to the probe is disabled by default. You can enable the HTTP
interface by setting two properties. You can specify values for additional properties
to configure the HTTP interface, for example, the number of worker threads and
file serving.

About this task

Procedure

To enable and configure remote adminstration:
1. To enable remote administration with no authentication and HTTP transport,

set the properties as described in the following table:

Property Instructions

NHttpd.EnableHTTP Set this property to TRUE.

NHttpd.ListeningPort Set this property to the number of any free
port.

The HTTP port is enabled and set to listen for HTTP connections on the
specified port number. The port listens on all available interfaces on the host.

2. To further configure the HTTP interface, set the following properties as
required:

Property Instructions

NHttpd.NumWorkThreads Increase the value to increase the number of
worker threads that handle the incoming
HTTP requests. The default is 5.

NHttpd.ExpireTimeout Set the maximum time, in seconds an
HTTP/1.1 connection is left in an idle state
before it is dropped. The default is 15.

© Copyright IBM Corp. 1994, 2013 91

Property Instructions

NHttpd.AccessLog Set this property to the path to the access
log that is created by the probe. The default
is access.log.

NHttpd.EnableFileServing Set this property to TRUE to enable file
serving by the probe.

Set this property together with the
NHttpd.DocumentRoot property, to enable the
probe to act as a simple HTTP server,
serving files from the local file system.

The default is FALSE.

NHttpd.DocumentRoot Set this property to the document root for
HTTP requests.

Set this property together with the
NHttpd.EnableFileServing property, to
enable the probe to act as a simple HTTP
server, serving files from the local file
system.

The default is ./.

NHttpd.AuthenticationDomain Set this property to the authentication
domain that is presented when
authentication details are requested over the
HTTP or HTTPS connection. The default is
omnibus.

What to do next

Set up the authentication between the remote system and the HTTP interface and,
if required, set up an SSL connection. After you have performed these tasks, restart
the probe so that all the changes to the property values can take effect.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Configuring authentication between remote systems and probes
You can configure the remote administration functionality to authenticate the user
credentials for every connection to the HTTP interface. Authentication restricts the
connections to a valid combination of user name and password. By default, the
user credentials are not authenticated, so any user credentials are permitted.

Before you begin

Ensure that the password associated with the user name is hashed with AES-128.
Use the nco_crypt command-line utility, with the -aes option, to hash the
password. For example:

nco_crypt -aes password

92 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

About this task

Authentication through the HTTP interface is controlled by the Nhttpd.BasicAuth
probe property. The default value of this property is "", which accepts any user
credential as valid.

Only a single combination of a user name and password is permitted. This
authentication does not interface with other methods of authentication, such as
secure mode authentication, or Pluggable Authentication Modules (PAM)

The combination of user name and password is sent to the HTTP interface in
near-plaintext. To avoid plaintext, configure the HTTP interface for SSL
connections.

Procedure

To enable and configure authentication:

In the probe properties file, set the Nhttpd.BasicAuth property to a string in the
format "username:password", where username is any set of characters that does not
include a colon (:) and password is the AES-128 hash of the password generated by
the nco_crypt utility.
For example:
v The following value is a combination of the user name auth and a hash of the

password netcool:
"auth:tOufpMhIN7R3L1Np89XRvA=="

If you specify a blank string ("") for the property, all authentication attempts are
permitted, regardless of the supplied credentials.

What to do next

To avoid sending plaintext passwords, configure an SSL connection between the
remote system and the probe. To increase the security of the user-password
combination, change the file system permissions of the probe properties file. After
you have performed these tasks, restart the probe so that all the changes to the
property values can take effect.
Related tasks:
“Configuring SSL connections between remote systems and probes” on page 94
To secure communications and HTTP traffic to and from remote probes, configure
an SSL connection. This prevents communications from being sent in plaintext.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

Chapter 5. Remotely administering probes 93

Configuring SSL connections between remote systems and probes
To secure communications and HTTP traffic to and from remote probes, configure
an SSL connection. This prevents communications from being sent in plaintext.

Before you begin

For the SSL connection, ensure that authentication is enabled. Also ensure that the
probe is configured to listen on an HTTPS port. For example, create a key database
on the host on which the probe is running and then create a self-signed (CA)
certificate. Then, create a certificate request from probe host and sign with the CA
certificate label. Receive the signed certificate into the key database on probe host,
so that the key database contains a certificate for the probe host. Then, extract the
signer certificate. Add the signer certificate to the key database on the host from
which you want to connect to the HTTP interface, and issue the requests.

Procedure

To enable and configure SSL connections, set the following properties in the probe
rules file:

Property Instructions

NHttpd.SSLEnable Set this property to TRUE.

NHttpd.SSLListeningPort Set this property to the port number on
which the probe needs to listen for SSL
connections.

NHttpd.SSLCertificate Set this property to the label of the
certificate contained in the
$NCHOME/etc/security/keys/omni.kdb key
database file. This value is used as the
certificate for the HTTPS server.

NHttpd.SSLCertificatePwd Set this property to the password for the
$NCHOME/etc/security/keys/omni.kdb key
database file.

What to do next

Restart the probe so that all the changes to the property values can take effect.
Related tasks:
“Configuring authentication between remote systems and probes” on page 92
You can configure the remote administration functionality to authenticate the user
credentials for every connection to the HTTP interface. Authentication restricts the
connections to a valid combination of user name and password. By default, the
user credentials are not authenticated, so any user credentials are permitted.
“Sending remote requests to probes (nco_http)” on page 95
Use the nco_http utility to connect to the HTTP or HTTPS interface of a probe and
issue requests.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

94 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Sending remote requests to probes (nco_http)
Use the nco_http utility to connect to the HTTP or HTTPS interface of a probe and
issue requests.

Before you begin

Ensure that authentication and, if required, an SSL connection is configured.

About this task

To start the nco_http utility, use the following command:

UNIX $OMNIHOME/bin/nco_http command_line_options

Windows %OMNIHOME%\bin\nco_http.exe command_line_options

You can use the nco_http.props properties file to store several of the command
line option values. You can store frequently used options, such as the user name
and password, instead of entering them each time you run the utility.

Properties and command-line options for the nco_http utility are described in the
following table.

Table 26. nco_http properties and command-line options

Property
Command-line
option Description

ConfigCryptoAlg string N/A Specifies the cryptographic algorithm to use
for decrypting string values (including
passwords) that were encrypted with the
nco_aes_crypt utility and then stored in the
properties file. Set the string value as
follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can
use either AES_FIPS or AES. Use AES only
if you need to maintain compatibility
with passwords that were encrypted by
using the tools provided in versions
earlier than Tivoli Netcool/OMNIbus
V7.2.1.

The value that you specify must be identical
to that used when you ran nco_aes_crypt
with the -c setting, to encrypt the string
values.

Use this property in conjunction with the
ConfigKeyFile property.

The default is AES.

Chapter 5. Remotely administering probes 95

Table 26. nco_http properties and command-line options (continued)

Property
Command-line
option Description

ConfigKeyFile string N/A Specifies the path and name of the key file
that contains the key used to decrypt
encrypted string values (including
passwords) in the properties file.

The key is used at run time to decrypt
string values that were encrypted with the
nco_aes_crypt utility. The key file that you
specify must be identical to the file used to
encrypt the string values when you ran
nco_aes_crypt with the -k setting.

Use this property in conjunction with the
ConfigCryptoAlg property.

The default is "".

Data string -data string Specifies the HTTP data for the request.

The default is "".

DataType string -datatype string Specifies the HTTP data mime type for the
request.

The default is "".

Header string -header string Specifies extra HTTP header data for the
request.

The default is "".

N/A -help Displays help about the command-line
options.

N/A -messagelevel Specifies the logging level for messages. The
available logging levels are FATAL, ERROR,
WARN, INFO, and DEBUG.

The default level is INFO.

MessageLog string -messagelog string Specifies the name and location of the log
file.

The default level is stderr (standard error).

Method string -method string Specifies the HTTP method for the request.
The available methods are GET, POST, and
PATCH.

The default method is GET.

NHttpd.SSL
CertificatePwd string

N/A Specifies the password required to access
the SSL certificate file.

The default is "".

NHttpd.SSLEnable
boolean

N/A Enables the use of SSL support.

The default is FALSE.

Password string -password string Specifies the HTTP password for the
request.

The default is "".

96 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 26. nco_http properties and command-line options (continued)

Property
Command-line
option Description

N/A -propsfile Specifies the name and location of the
utility’s properties file.

The default is: $OMNIHOME/etc/
nco_http.props

N/A -timeout Specifies the timeout period for the HTTP
request.

The default is 60 seconds.

URI string -uri string Specifies the HTTP URI for the request.

The default is "".

Username string -username string Specifies the HTTP user name for the
request.

The default is "".

N/A -version Displays version information for the utility.

The default is "".

Example

The following example returns the current version information of a probe, the
value of the probe reloadrulesflag field, and the values of the probe properties. The
request returns encrypted properties in their encrypted form.
$OMNIHOME/bin/nco_http -uri http://servername.ibm.com:port_number/probe/common

The information returned looks like this:
2012-06-22T13:56:31: Information: I-UNK-104-002: {
"version": {
"ProbeVersion": "Netcool/OMNIbus Event Simulation Probe probe -
Version 7.4.0 64-bit\n(C) Copyright IBM Corp. 1994, 2012\n",
"APIVersion": "Netcool/OMNIbus Probe API Library Version 7.4.0 64-bit",
"ReleaseID": "5.2012.0620",
"APIReleaseID": "5.2012.0620",
"SoftwareCompileInfo": "Wed Jun 20 20:17:13 BST 2012 on servername.ibm.com
(Linux 2.6.18-274.17.1.el5 #1 SMP Wed Jan 4 22:45:44 EST 2012)"
},
"reloadrulesflag": 0,
"properties": {
"NHttpd.SSLCertificate": "",
"RawCaptureFileAppend": 0,
"StoreAndForward": 1,
"KeepLastBrokenSAF": 0,
"MessageLevel": "warn",
"ConfigCryptoAlg": "AES",
"StoreSAFRejects": 0,
"OplStatsNumberEventsGenerated": 0,
"Buffering": 0,
"RawCapture": 0,
"OplDetailsTableName": "alerts.details",
"SSLServerCommonName": "",
"LookupTableMode": 3,
"NHttpd.EnableHTTP": true,
"NHttpd.AccessLog": "access.log",
"OplStatsNumberEventsDiscarded": 0,

Chapter 5. Remotely administering probes 97

"PollServer": 0,
"ProbeWatchHeartbeatInterval": 0,
"RetryConnectionTimeOut": 30,
"OplStatsRulesFileTimeSec": 0,
"MessageLog": "/export/views/dev/omnibus74/omnibus/log/simnet.log",
"NHttpd.AuthenticationDomain": "omnibus",
"NHttpd.SSLListeningPort": 0,
"SAFFileName": "/export/views/dev/omnibus74/omnibus/var/simnet.store",
"LogFile": "/export/views/dev/omnibus74/omnibus/probes/linux2x86/simnet.def",
"MaxLogFileSize": 1048576,
"MsgDailyLog": 0,
"BeatInterval": 2,
"Server": "NCOMS",
"CacheRulesFile": "/export/views/dev/omnibus74/omnibus/var/simnet.rulescache",
"Props.CheckNames": true,
"BeatThreshold": 1,
"CacheRules": 0,
"OplStatsMemoryInUse": 359952,
"BufferSize": 10,
"Help": 0,
"LogFilePoolSize": 10,
"PidFile": "/export/views/dev/omnibus74/omnibus/var/simnet",
"Manager": "Omnibus",
"NHttpd.ExpireTimeout": 15,
"NHttpd.SSLCertificatePwd": "",
"Peerport": 9999,
"RulesFile": "/export/views/dev/omnibus74/omnibus/probes/linux2x86/simnet.rules",
"OldTimeStamp": "FALSE",
"SingleThreadedComms": 0,
"OplStatusTableName": "alerts.status",
"ServerBackup": "",
"OplStatsProbeStartTime": 1340369540,
"TimeBetweenEvents": 1000,
"LogFileUsePool": 0,
"MaxRawFileSize": -1,
"OplPaName": "",
"OplStatsCPUTimeSec": 0,
"NetworkTimeout": 0,
"PeerHost": "localhost",
"NHttpd.NumWorkThreads": 5,
"NHttpd.DocumentRoot": "./",
"LogFileUseStdErr": 0,
"RegexpLibrary": "TRE",
"AuthPassword": "",
"NHttpd.EnableFileServing": false,
"OplStatsNumberEvents": 251,
"AuthUserName": "",
"SecureLogin": 0,
"Version": 0,
"Mode": "standard",
"RetryConnectionCount": 15,
"MsgTimeLog": "0000",
"OplStatsCPUTimeUSec": 50000,
"NHttpd.SSLEnable": false,
"OplDumpProps": 0,
"PropsFile": "/export/views/dev/omnibus74/omnibus/probes/linux2x86/simnet.props",
"OplStatsRulesFileTimeUSec": 7675,
"MaxSAFFileSize": 1048576,
"ConfigKeyFile": "",
"RawCaptureFile": "/export/views/dev/omnibus74/omnibus/var/simnet.cap",
"Name": "simnet",
"OplPaID": 0,
"RollSAFInterval": 90,
"NHttpd.ListeningPort": 4444,
"SAFPoolSize": 3,
"NHttpd.BasicAuth": "",

98 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

"OplPacketSize": 512,
"AutoSAF": 0
}
}

The following example sets the MessageLevel property of the probe to debug:
$OMNIHOME/bin/nco_http -uri http://servername.ibm.com:4444/probe/common
-datatype application/json -data ’{ "properties": { "MessageLevel": "debug" } }’
-method patch

Related tasks:
“Configuring SSL connections between remote systems and probes” on page 94
To secure communications and HTTP traffic to and from remote probes, configure
an SSL connection. This prevents communications from being sent in plaintext.
Related reference:
“About the common URI” on page 103
Use the common URI provided in the standard probe C library (libOpl) to execute
standard HTTP commands against all probes.

Reloading rules files (nco_probereloadrules)
You can use the nco_probereloadrules utility to remotely reload a probe rules file
without restarting the probe.

Before you begin

Ensure that authentication and, if required, an SSL connection is configured. The
probe that you want to communicate with must also have its HTTP or HTTPS
interface enabled.

About this task

To start the nco_probereloadrules utility, use the following command:

UNIX $OMNIHOME/bin/nco_probereloadrules command_line_options

Windows %OMNIHOME%\bin\nco_probereloadrules.cmd command_line_options

The nco_probereloadrules utility uses the nco_http utility to reload the rules file
over a HTTP or HTTPS connection. It can also make use of the properties file
nco_http.props. You can store frequently used options, such as the user name and
password, in nco_http.props instead of entering them each time that you run the
utility.

Command-line options for the nco_probereloadrules utility are described in the
following table.

Table 27. nco_probereloadrules command-line options

Command-line option Description

-help Displays help about the command-line options.

-host Specifies the host name where the probe is installed.

-messagelevel Specifies the logging level for messages. The available
logging levels are FATAL, ERROR, WARN, INFO, and DEBUG.
The default level is INFO.

-password Specifies the HTTP password for the update.

Chapter 5. Remotely administering probes 99

Table 27. nco_probereloadrules command-line options (continued)

Command-line option Description

-port Specifies the port number on which to communicate with
the probe.

-ssl Specifies the use of a HTTPS connection.

-timeout Specifies the timeout period for the HTTP response.

-username Specifies the HTTP user name for the request.

Example

The following example reloads the rules file for a probe whose host is servername
and where the port is 2020.
$OMNIHOME/bin/nco_probereloadrules -host servername -port 2020

Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.

Sending property updates to probes (nco_setprobeprop)
You can use the nco_setprobeprop utility to update the value of a probe property.
The nco_setprobeprop utility uses the nco_http utility to make the property update
over a HTTP or HTTPS connection. nco_setprobeprop is also used by the flood
control triggers to put probes into flood control mode.

Before you begin

Ensure that authentication and, if required, an SSL connection is configured. The
probe that you want to communicate with must also have its HTTP or HTTPS
interface enabled.

About this task

To start the nco_setprobeprop utility, use the following command:

UNIX $OMNIHOME/bin/nco_setprobeprop command_line_options

Windows %OMNIHOME%\bin\nco_setprobeprop.cmd command_line_options

If you specify a new value for an existing probe property, the utility will update
the property value. If you do not specify a value for a property, the new value of
the property will be an empty string.

You can also specify a property name that does not exist and the utility will create
the property and set it to the value that you specify for it. In this case, you must
have altered the probe’s rules file to handle the property (for example, use
%propertyname to get the value of the property). Properties created by the utility
are transient and are lost when the probe shuts down.

100 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Command-line options for the nco_setprobeprop utility are described in the
following table. Because nco_setprobeprop uses the nco_http utility to
communicate with the probe, it can make use of the properties file nco_http.props.
You can store frequently used options, such as the user name and password, in
nco_http.props instead of entering them each time that you run the utility.

Table 28. nco_setprobeprop command-line options

Command-line option Description

-help Displays help about the command-line options.

-host Specifies the host name where the probe is installed.

-messagelevel Specifies the logging level for messages. The available
logging levels are FATAL, ERROR, WARN, INFO, and DEBUG.
The default level is INFO.

-name Specifies the name of the property to update or create.

-password Specifies the HTTP password for the update.

-port Specifies the port number on which to communicate with
the probe.

-ssl Specifies the use of a HTTPS connection.

-timeout Specifies the timeout period for the HTTP response.

-username Specifies the HTTP user name for the request.

-value Specifies the new value of the property. If you do not
specify a value, the new value of the property will be an
empty string.

Example

The following example sets the value of the FloodControl property to flood. The
probe host is servername and the port is 2000.
$OMNIHOME/bin/nco_setprobeprop -name FloodControl -value flood -host servername
-port 2000

Generating events with probes (nco_probeeventfactory)
You can use the nco_probeeventfactory utility to remotely generate an event with
a probe. The utility causes the probe to process the rules file using the name-value
pairs that you provide instead of the values supplied by the usual event source.
This is useful for testing changes to the rules file. You could also amend the rules
file so that the name-value pairs that you supply cause internal variables to
change, without the need for a “real” event from an event source.

Before you begin

Ensure that authentication and, if required, an SSL connection is configured. The
probe that you want to communicate with must also have its HTTP or HTTPS
interface enabled.

About this task

To start the nco_probeeventfactory utility, use the following command:

UNIX $OMNIHOME/bin/nco_probeeventfactory command_line_options
[name=value]...

Chapter 5. Remotely administering probes 101

Windows %OMNIHOME%\bin\nco_probeeventfactory.cmd command_line_options
[name=value]...

You can specify event elements as name-value pairs. You must enclose any element
names or values that contain spaces within double quotation marks ("), for
example:
Summary="This is the summary."

You can specify as many name-value pairs as your command-line character limit
allows.

The nco_probeeventfactory utility uses the nco_http utility to generate the event
over a HTTP or HTTPS connection. It can also make use of the properties file
nco_http.props. You can store frequently used options, such as the user name and
password, in nco_http.props instead of entering them each time that you run the
utility.

Command-line options for the nco_probeeventfactory utility are described in the
following table.

Table 29. nco_probeeventfactory command-line options

Command-line option Description

-help Displays help about the command-line options.

-host Specifies the host name where the probe is installed.

-messagelevel Specifies the logging level for messages. The available
logging levels are FATAL, ERROR, WARN, INFO, and DEBUG.
The default level is INFO.

-password Specifies the HTTP password for the update.

-port Specifies the port number on which to communicate with
the probe.

-ssl Specifies the use of a HTTPS connection.

-timeout Specifies the timeout period for the HTTP response.

-username Specifies the HTTP user name for the request.

Example

The following example generates an event with a probe whose host is servername
and where the port is 2020. The name-value pairs specify that the alert group is set
to Netcool, the host name of the device is set to testserver.ibm.com, and the
severity of the alert is set to 1.
$OMNIHOME/bin/nco_probeeventfactory -host servername -port 2020 AlertGroup=Netcool
Host=testserver.ibm.com Severity=1

102 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

About the common URI
Use the common URI provided in the standard probe C library (libOpl) to execute
standard HTTP commands against all probes.

You can use the URI to perform the following actions against probes:
v Report the version and ID of the probe, and information about the current state

of the probe, including its properties
v Signal the probe to reload its rules file
v List the properties of the probe
v Get or set a property
v Create synthetic events that are processed by the rules file.

Probes can register their own URIs to expose entities specific to a particular probe.
These URIs can be used to trigger actions against the device or system that the
probe is connected to or communicating with.

The following table describes the features of this URI.

Feature Description

Path /probe/common

Methods GET, POST, PATCH

Accepted MIME types application/json, where applicable

Content-type application/json, where applicable

Caching A GET request sets the Cache-Control HTTP
header field to no-cache, to indicate the
volatile nature of the data returned by a
GET request of this URI.

HTTP return codes A list of HTTP return codes and their
meaning (in relation to the action) is
provided. This list is not exhaustive and any
HTTP return code might be returned. Build
your applications or scripts to expect any
possible return codes.

For more information about JavaScript Object Notification (JSON), see
http://www.json.org/.

Get the current state of a probe
This request accesses the current version information of a probe, the values of the
probe properties and the value of the probe reloadrulesflag field. The request
returns encrypted properties in their encrypted form.

When designing an application or script to change values, ensure that it obtains a
recent set of values via a GET request before the PATCH request is sent.

The following table describes the features of this request.

Feature Description

URI /probe/common

Method GET

Chapter 5. Remotely administering probes 103

http://www.json.org/

Feature Description

Content-type application/json

Query parameters search

For filtering the properties returned by a
GET request.

Caching The response to the request is marked
no-cache due to the volatility of the data
contained in the response.

HTTP ETags are not supported.

Sample response

The following example shows an sample response to this request. The list of
returned properties is abridged.
{
"version":{
"ProbeVersion": "Netcool/OMNIbus Event Simulation Probe probe -
Version 7.4\n(C) Copyright IBM Corp. 1994, 2007\n",
"APIVersion": "Netcool/OMNIbus Probe API Library Version 7.4",
"ReleaseID": "3.0.4082",
"APIReleaseID": "5.2012.0410",
"SoftwareCompileInfo":"Tue Jan 29 13:40:19 GMT 2008 on sol8-build2.hursley.ibm.com
(SunOS 5.8 Generic_117350-33)"
},
"reloadrulesflag": 0,
"properties":{
"NHttpd.SSLCertificate": "",
"RawCaptureFileAppend": 0,
"StoreAndForward": 1,

...

"OplPacketSize": 512,
"AutoSAF": 0
}
}

HTTP response codes

The following table shows the possible response codes that might be returned by
this request. This table is not exhaustive. Clients must be prepared for all HTTP
status codes.

Response code Explanation

200 The request was successful.

104 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Reload the rules file
This request accesses the reloadrulesflag attribute of the probe, which is contained
in the standard probe C library (libOpl). By setting the value of the attribute, the
request triggers the probe to reload its rules file before the next event is processed.
A SIGHUP signal on UNIX triggers the same action.

The reloadrulesflag attribute can be set to 1, which triggers the probe to reload its
rules file.

The request is actioned immediately before the next event is processed. This means
that a delay can occur between the request being made and being actioned, for
example, if the probe is inactive.

The following table describes the features of this request.

Feature Description

URI probe/common

Method PATCH

Accepted MIME types application/json

Query parameters None

Sample request

The following example shows a sample request to a probe to reload its rules file.
{ “reloadrulesflag” : 1 }

HTTP response codes

The following table shows the possible response codes that might be returned by
this request. This table is not exhaustive. Clients must be prepared for all HTTP
status codes.

Response code Explanation

200 OK The request was successful.

400 Bad Request For example, if a PATCH request was made
with invalid payload data.

415 Unsupported Media Type Data was provided as input in a format
other than application/json.

Related tasks:
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.
Related reference:
“Set PATCH or POST requests as blocking or nonblocking” on page 112
Requests that change values or trigger actions by using PATCH or POST can be set
to be blocking or nonblocking.

Chapter 5. Remotely administering probes 105

List the probe properties
This request accesses the properties of the probe. You can specify a search query
variable to restrict the properties that are returned.

Restriction: The request does not return properties that are encrypted in the
properties file.

The following table describes the features of this request.

Feature Description

URI /probe/common

Method GET

Content-type application/json

Search parameter search

The search is a case-insensitive substring
search. An empty search string is equivalent
to no search string and returns all
properties.

The search query variable does not prevent
the version information and the value of the
reloadrulesflag attribute from being
returned.

Sample

The following example shows a sample response to this request, when the search
query variable “buff” is specified, that is: GET /probe/common?search=buff. In this
example, the version information that would typically be returned is omitted.
{
"version": {
...
},
"reloadrulesflag": 0,
"properties": {
"Buffering": 0,
"BufferSize": 10
}

}

HTTP response codes

The following table shows the possible response codes that might be returned by
this request. This table is not exhaustive. Clients must be prepared for all HTTP
status codes.

Response code Explanation

200 OK The request was successful

106 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Create a synthetic event
This request creates a synthetic event that can trigger the execution of the probe
rules file, or a fragment of the rules file.

The following table describes the features of this request.

Feature Description

URI /probe/common

Method POST

Accepted MIME types application/json

Examples

The following sample request creates an event to go through the rules file, with the
following tokens set (in rules file syntax):
v $token1="value1"
v $token2="value2"
v $token3="value3"
{ “eventfactory” :
[
{ “token1” : “value1”, “token2” : “value2”, “token3” : “value3” }
]
}

The following sample request creates two events to go through the rules file, with
the following tokens set (in rules file syntax):
v For the first event:

– $token1="value1"
– $token2="value2"
– $token3="value3"

v For the second event:
– $al="v1"
– $a2="v2"

{ “eventfactory” :
[
{ “token1” : “value1”, “token2” : “value2”, “token3” : “value3” },
{ “a1” : “v1”, “a2” : “v2” }
]
}

HTTP response codes

The following table shows the possible response codes that might be returned by
this request. This table is not exhaustive. Clients must be prepared for all HTTP
status codes.

Response code Explanation

200 OK The request was successful.

400 Bad Request For example, if a PATCH request was made
with invalid payload data.

Chapter 5. Remotely administering probes 107

Response code Explanation

415 Unsupported Media Type Data was provided as input in a format
other than application/json.

500 Internal Server Error An internal error prevented the action from
completing.

To troubleshoot the request, perform a GET
request to check whether any of the required
properties were changed. If they were not,
resubmit the request.

Related reference:
“Set PATCH or POST requests as blocking or nonblocking” on page 112
Requests that change values or trigger actions by using PATCH or POST can be set
to be blocking or nonblocking.

Set a probe property
This request changes the values of probe properties. It can also create new
properties. All new properties created in this way require a string value.

Important: Although this request can change or set the values of all probe
properties, the change might not change the behavior of the probe. Most probe
properties are read only when the probe starts, and are not subsequently reread.
You might need to restart the probe so that the change to the property value
changes the behavior of the probe. If you are working with a failover pair, ensure
that changes you make to the master probe are also propagated to the slave.

The following table describes the features of this request.

Feature Description

URI probe/common

Method PATCH

Accepted MIME types application/json

Query parameters None

Samples

The following example shows a sample request, which causes the RawCapture
property to be set to 1.
{
"properties": {
"RawCapture": 1
}
}

The following example shows an invalid request, because the RawCapture property
requires an integer, not a string. The request will cause a 400 Bad Request
response.
{
"properties": {
"RawCapture": "yes"
}
}

108 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The following example shows a sample request that creates two new properties:
MyProperty, which has the value busy, and AnotherProp, which has the value no.
{
"properties": {
"MyProperty": "busy",
"AnotherProp": "no"
}
}

HTTP response codes

The following table shows the possible response codes that might be returned by
this request. This table is not exhaustive.

Response code Explanation

200 OK The request was successful and the property
values were changed.

400 Bad Request This response code might be for one of the
following reasons:

v Invalid JSON data was sent.

v An invalid data type was provided for an
existing property.

v An attempt was made to overwrite the
value of an encrypted property.

v An attempt was made to create new
property that is not a string.

500 Internal Server Error An internal error prevented the action from
completing.

To troubleshoot the request, perform a GET
request to check whether any of the required
properties were changed. If they were not,
resubmit the request.

Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.
“Set PATCH or POST requests as blocking or nonblocking” on page 112
Requests that change values or trigger actions by using PATCH or POST can be set
to be blocking or nonblocking.

Acknowledge event and event_payload
You can use the "options" section of the JSON payload of the /probe/common URI
to request the generation of an acknowledgement event in response to an HTTP
request. The acknowledgement event contains details of the HTTP request and its
outcome and is sent through the probe rules file to the ObjectServer. You can add
payload data to the acknowledgement event; this data can be information that is
specific to the event or the ObjectServer.

You can use this data to correlate the acknowledgement event with specific events
or ObjectServers. Additionally, if you add payload data to the acknowledgement
event, you can then write triggers that catch the results of the HTTP requests and
update the corresponding events. These triggers can be fired from right-click tools
or from automations.

Chapter 5. Remotely administering probes 109

For an acknowledgement event, set the "event_ack" object of the "options" section
to true. This setting instructs the standard probe C library (lipOpl) to send an
acknowledgement event to the default ObjectServer, via the rules file. For more
information, see “Example 1: Acknowledgement event.”

For an acknowledgement event with a payload, et the "event_ack" object of the
"options" section to true. Additionally, in the "event_ack_payload" object, add a
set of name-value pairs of payload data, which is added to the acknowledgement
event. The "event_ack" object must be a flat list and cannot contain any child
JSON objects, arrays, or NULL items. All items in the list of name-value pairs must
be strings, because these items are mapped to probe rules file elements before the
acknowledgment event is processed through the rules file. For more information,
see “Example 2: Acknowledgement event with payload” on page 111.

Example 1: Acknowledgement event

The following example shows the "options" section of the JSON payload set to
request the generation of an acknowledgement with a PATCH request.
{
"options": { "block_response" : false,

"event_ack" : true
},

"properties": {
"MyNewProperty": "myvalue"
}
}

The {"event_ack" : true } object instructs libOpl to send an acknowledgement
event to the default ObjectServer. For the request in this example,
acknowledgement event that enters the probe rules file is equivalent to the
following elements:
@Name=nameproperty
@Agent=agentproperty
@Node=hostname
@OwnerGID=1
@Severity=1
@Manager="ProbeWatch"
@Summary="HTTP event_ack ..."
@Identifier=@Name+"@"+@Node+": "+@Summary

$req_method="PATCH"
$request_outcome="OK"
$req_payload_type="application/json"
$req_port="6789"
$req_uri="/probe/common"
$req_http_type="https"
$req_hostname="probehost.example.com"
$req_auth_type="none"
$http_return_reason="Accepted"
$req_username="test"
$req_ipaddr="192.168.1.1"
$http_return_code="202"
$req_payload_length="178"

In this example, nameproperty is the value of the probe Name property, agentproperty
is the value of the probe Agent property, and hostname is the name of the host
computer on which the probe is installed.

110 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example 2: Acknowledgement event with payload

The following example shows the "event_ack_payload" object of the "options"
section of the JSON payload, set with an arbitrary set of name-value pairs of
payload data for a PATCH request.
{
"options": {

"block_response" : false,
"event_ack" : true,
"event_ack_payload" : {

"name1" : "value1",
"name2" : "value2"

}
},
"properties":{
"MyNewProperty": "myvalue"
}
}

For the request in this example, acknowledgement event that enters the probe rules
file is equivalent to the following elements:
@Name=nameproperty
@Agent=agentproperty
@Node=hostname
@OwnerGID=1
@Severity=1
@Manager="ProbeWatch"
@Summary="HTTP event_ack ..."
@Identifier=@Name+"@"+@Node+": "+@Summary

$req_method="PATCH"$request_outcome="OK"
$req_payload_type="application/json"
$req_port="6789"
$req_uri="/probe/common"
$req_http_type="https"
$req_hostname="probehost.example.com"
$name1="value1"
$name2="value2"
$req_auth_type="none"
$http_return_reason="Accepted"
$req_username="test"
$req_ipaddr="192.168.1.1"
$http_return_code="202"
$req_payload_length="178"

In this example, nameproperty is the value of the probe Name property, agentproperty
is the value of the probe Agent property, and hostname is the name of the host
computer on which the probe is installed.

The acknowledgement event is identical to the event requested in “Example 1:
Acknowledgement event” on page 110, except for the payload data, which consists
of the "name1" and "name2" elements.

Chapter 5. Remotely administering probes 111

Set PATCH or POST requests as blocking or nonblocking
Requests that change values or trigger actions by using PATCH or POST can be set
to be blocking or nonblocking.

In a blocking request, which is the default, the action described by the payload is
validated. The, the request is completed with the resultant HTTP response code to
indicate success or failure. Success is indicated by a 200 – OK return code, and
failure is indicated by the most appropriate HTTP return codes.

To make a request nonblocking, use the "options" section of the JSON payload for
an action. In the following sample, which uses the /probe/common PATCH example
data to create a new property, an "options" section is added, which specifies the
extra JSON data.
{
"options": {"block_response" : false },
"properties": {

"MyNewProperty" : "myvalue"
}
}

After this request is syntactically and semantically validated, the HTTP server
responds with a 202 – Accepted response code. At this point, the action is
requested, but not executed.

If an invalid request is made, which includes the nonblocking flag, a failure HTTP
response code is returned. The following example would return a 400 – BAD
REQUEST response code, because the new property value is not a string. Each new
property that is created must have a string value.
{
"options" : {
"block_response" : false },
"properties": {
"MyNewProperty": 1
}

}

Nonblocking requests that are accepted (by using { "block_response" : false })
can still fail due to internal unforeseen problems. Because the HTTP connection is
effectively closed, the HTTP interface cannot inform the client of any subsequent
problems. For this reason, an optional “acknowledgement event” can be generated
by the HTTP interface for such requests.
Related reference:
“Reload the rules file” on page 105
This request accesses the reloadrulesflag attribute of the probe, which is contained
in the standard probe C library (libOpl). By setting the value of the attribute, the
request triggers the probe to reload its rules file before the next event is processed.
A SIGHUP signal on UNIX triggers the same action.
“Create a synthetic event” on page 107
This request creates a synthetic event that can trigger the execution of the probe
rules file, or a fragment of the rules file.
“Set a probe property” on page 108
This request changes the values of probe properties. It can also create new
properties. All new properties created in this way require a string value.

112 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 6. Common probe properties and command-line
options

A number of properties and command-line options are common to all probes and
TSMs.

For the properties and command-line options that are specific to a particular probe
or TSM, see the individual reference guides for each probe and TSM.

Tip: You can encrypt string values in a properties file by using property value
encryption.

On startup, a probe reads the property values specified in its properties file. Some
properties are only read at startup and changes made to them while the probe is
running have no effect. The values of other properties can be changed while the
probe is running. Of these properties, some value changes take effect immediately
and some do not take effect until the rules file is reread. When you force a reread
of the rules file, the connection to the ObjectServer is dropped and reestablished,
causing the probe to recheck the property value.

You can use the following methods to change the value of a property:
v Change the property value in the properties file. You must stop a probe and

restart it for such changes to take effect.
v When starting a probe, use the available command-line options to assign

temporary values to one or more properties.
v Use the probe HTTP interface (if available) to update a property value on a

running probe. Depending on the property, such changes take effect either
immediately or after the rules file is reloaded.

v Edit the rules file and use the %Property setting to change a property value on a
running probe. You must reload the rules file for such changes to take effect.

The following table lists the common properties and command-line options that
are available to all probes, and provides their default settings. String values in
non-ASCII characters are not supported. The Update type column indicates when
changes to property values take effect: on startup only, immediately, or on
reconnection of the probe to the ObjectServer.

© Copyright IBM Corp. 1994, 2013 113

Table 30. Common probe properties and command-line options

Property Command-line option Description Update type

AuthPassword
string

N/A Specifies the password associated with the user name
that is used to authenticate the probe when it connects
to a proxy server or an ObjectServer running in secure
mode.

The default is ’’.

When in FIPS 140–2 mode, the password can either be
specified in plain text, or can be encrypted with the
nco_aes_crypt utility. If you are encrypting passwords
by using nco_aes_crypt in FIPS 140–2 mode, you must
specify AES_FIPS as the encryption algorithm.

When in non-FIPS 140–2 mode, the password can be
encrypted with the nco_g_crypt or nco_aes_crypt
utilities. If you are encrypting passwords by using
nco_aes_crypt in non-FIPS 140–2 mode, you can specify
either AES_FIPS or AES as the encryption algorithm. Use
AES only if you need to maintain compatibility with
passwords that were encrypted using the tools provided
in versions earlier than Tivoli Netcool/OMNIbus V7.2.1.

On
reconnection

AuthUserName
string

N/A Specifies a user name used to authenticate the probe
when it connects to a proxy server or an ObjectServer
running in secure mode.

The default is ’’.

On
reconnection

AutoSAF 0 | 1 -autosaf

-noautosaf

Specifies whether automatic store-and-forward mode is
enabled. In this mode, if the probe starts but is unable
to send events to the ObjectServer, the probe goes into
store mode instead of terminating.

By default, automatic store-and-forward mode is not
enabled (0).

Note: For automatic store-and-forward to work, the
probe must previously have been connected at least
once to the ObjectServer so that it knows the format in
which to store events for that ObjectServer. If the probe
is trying to connect to a virtual pair of ObjectServers
and both of the ObjectServers are down, the probe
checks the AutoSAF property setting. If automatic
store-and-forward is enabled, the probe begins to store
events in the store-and-forward file; otherwise, the
probe terminates.

On startup
only

BeatInterval
integer

-beatinterval integer Specifies the heartbeat interval for peer-to-peer failover.

The default is 2 seconds.

On startup
only

BeatThreshold
integer

-beatthreshold integer Specifies the extra period that the slave probe in a
peer-to-peer failover relationship waits for before
switching to active mode. The default is 1 second.

On startup
only

114 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

Fix Pack 1

BufferFlush
Interval integer

-bufferflushinterval
integer

Specifies the interval (in seconds) that a probe waits
before flushing alerts to the ObjectServer.

This property limits the time that alerts wait in the
buffer while the buffer is still within the maximum size
specified by the BufferSize property.

To use this property, you must enable the Buffering
property and set the BufferSize property to a value
greater than 0.

Note: Some probes have a FlushBufferInterval
property that provides an equivalent function to the
BufferFlushInterval property. If both properties are set
for an individual probe, a warning is written to the log
and the BufferFlushInterval property is not enabled.

The default is 0 seconds.

On startup
only

Buffering 0|1 -buffer

-nobuffer

Specifies whether buffering is used when sending alerts
to the ObjectServer. By default, buffering is not enabled
(0).
Note: All alerts sent to the same table are sent in the
order in which they were processed by the probe. If
alerts are sent to multiple tables, the order is preserved
for each table, but not across tables.

If multithreaded processing is in operation (the default),
a separate communication thread is used to send data to
each registered target ObjectServer, and a separate text
buffer is therefore maintained for each ObjectServer.

On startup
only

BufferSize
integer

-buffersize integer Specifies the number of alerts that the probe caches
when the Buffering property is set to 1. The default is
10.

On startup
only

CacheRules 0|1 -cacherules

-dontcacherules

Use this property to make the probe cache its rules file
each time the probe is restarted or made to reread its
rules file. When you start the probe, if it cannot read the
rules file, it reads the cache file instead.

By default, rules file caching is disabled, that is, the
property is set to 0.

On
reconnection

CacheRulesFile
string

-cacherulesfile string Use this property to specify the file to which you want
the probe to cache its rules file.

The default is $OMNIHOME/var/probename.rulescache,
where name is the abbreviated name that is used to
identify the probe, for example simnet for the simnet
probe.

Set this property only if you set the CacheRules
property to 1 and want to change the location of the
cache file from the default.

On
reconnection

Chapter 6. Common probe properties and command-line options 115

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

ConfigCryptoAlg
string

N/A Specifies the cryptographic algorithm to use for
decrypting string values (including passwords) that
were encrypted with the nco_aes_crypt utility and then
stored in the properties file. Set the string value as
follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can use either
AES_FIPS or AES. Use AES only if you need to maintain
compatibility with passwords that were encrypted by
using the tools provided in versions earlier than
Tivoli Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to that
used when you ran nco_aes_crypt with the -c setting,
to encrypt the string values.

Use this property in conjunction with the ConfigKeyFile
property.

On startup
only

ConfigKeyFile
string

N/A Specifies the path and name of the key file that contains
the key used to decrypt encrypted string values
(including passwords) in the properties file.

The key is used at run time to decrypt string values that
were encrypted with the nco_aes_crypt utility. The key
file that you specify must be identical to the file used to
encrypt the string values when you ran nco_aes_crypt
with the -k setting.

Use this property in conjunction with the
ConfigCryptoAlg property.

On startup
only

Dumpprops string -dumpprops string Displays a probe's current properties settings. Run the
probe with the -dumpprops option, for example:

$OMNIHOME/probes/nco_p_tivoli_eif -dumpprops

On startup
only

N/A -help Displays the supported command-line options and exits. On startup
only

KeepLastBroken
SAF 0 | 1

-keeplastbrokensaf

-dontkeeplastbroken
saf

Specifies whether to automatically save corrupted
store-and-forward records for future diagnosis.

If set to 1, corrupted store-and-forward records are
automatically saved. The default is 0.

Use this property in conjunction with the
StoreSAFRejects property.

Immediate

LogFilePoolSize
integer

-logfilepoolsize integer Specifies the number of log files to use if the logging
system is writing to a pool of files. This property works
only when the LogFileUsePool property is set to TRUE.
The pool size can range from 2 to 99.

The default is 10.
Note: This option is supported only on Windows
operating systems.

On startup
only

116 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

LogFileUsePool
0 | 1

-logfileusepool

-nologfileusepool

Specifies whether to use a pool of log files for logging
messages.

If set to 1, the logging system opens the number of files
specified for the pool at startup, and keeps them open
for the duration of its run. (You define the number of
files in the pool by using the LogFilePoolSize property.)
When a file in the pool reaches its maximum size (as
specified by the MaxLogFileSize property), the logging
system writes to the next file. When all the files in the
pool are at maximum size, the logging system truncates
the first file in the pool and starts writing to it again.
Files in the pool are named using the format
probename.log_ID, where ID is a two-digit number
starting from 01, to the maximum number specified for
the LogFilePoolSize property. When the logging system
starts to use a file pool, the system writes to the
lowest-available file number, regardless of which file it
was writing to when it last ran.

The default is 0. When set to 0, the default
probename.log file is renamed probename.log_OLD and a
new log file is started when the maximum size is
reached. If the file cannot be renamed, for example,
because of a read lock on the _OLD file, and
LogFileUseStdErr is set to 0, the logging system
automatically starts using a pool of log files. If the file
cannot be renamed, and LogFileUseStdErr is set to 1,
messages are logged to the console if the probe was run
from the command line. If the file cannot be renamed,
and LogFileUseStdErr is set to 1, messages are logged
to a file named %NCHOME%\omnibus\log\probename.err if
the probe is running as a Windows service.
Note: This option is supported only on Windows
operating systems.

On startup
only

LogFileUse
StdErr 0 | 1

-logfileusestderr

-nologfileusestderr

Specifies whether to use standard error (stderr) as an
output stream for logging messages.

The default is 0, which causes the logging system to
write to the default log file or to a pool of log files, as
set by the LogFileUsePool property.

If set to 1, messages are logged to the console when the
probe is run from the command line.
Note:

The LogFileUsePool property setting takes precedence
over the LogFileUseStdErr setting.

This option is supported only on Windows operating
systems.

On startup
only

Chapter 6. Common probe properties and command-line options 117

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

LookupTableMode
integer

-lookupmode integer Specifies how table lookups are performed. It can be set
to 1, 2, or 3. The default is 3.

If set to 1, all external lookup tables are assumed to
have a single value column. Tabs are not used as
column delimiters.

If set to 2, all external lookup tables are assumed to
have multiple columns. If the number of columns on
each line is not the same, an error is generated that
includes the file name and the line on which the error
occurred.

If set to 3, the rules engine attempts to determine the
number of columns in the external lookup table. An
error is generated for each line that has a different
column count from the previous line. The error includes
the file name and the line on which the error occurred.

On
reconnection

Manager string -manager string Specifies the value of the Manager field for the alert.
The default value is determined by the probe.

Immediate

MaxLogFileSize
integer

-maxlogfilesize integer Specifies the maximum size that the log file can grow
to, in Bytes. The default is 1 MB. When the log file
reaches the size specified, a second log file is started.
When the second file reaches the maximum size, the
first file is overwritten with a new log file and the
process starts again.

On startup
only

MaxRawFileSize
integer

N/A Specifies the maximum size of the raw capture file, in
KB. The default is unlimited (-1).

Immediate

MaxSAFFileSize
integer

-maxsaffilesize integer Specifies the maximum size (in Bytes) that the
store-and-forward file can grow to when disconnected
from the ObjectServer. The default is 1 MB.

Immediate

MessageLevel
string

-messagelevel string Specifies the message logging level. Possible values are:
debug, info, warn, error, and fatal. The default level is
warn.

Messages that are logged at each level are as follows:

fatal: fatal only.

error: fatal and error.

warn: fatal, error, and warn.

info: fatal, error, warn, and info.

debug: fatal, error, warn, info, and debug.

On startup
only

MessageLog
string

-messagelog string Specifies where messages are logged. The default is
$OMNIHOME/log/probename.log.

MessageLog can also be set to stdout or stderr.

On startup
only

118 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

Mode string -master

-slave

Specifies the role of the instance of the probe in a
peer-to-peer failover relationship. The value of the
property can be set to:

master: This instance is the master.

slave: This instance is the slave.

standard: There is no failover relationship.

The default is standard.

On startup
only

MsgDailyLog 0 |
1

-msgdailylog 0 | 1 Specifies whether daily logging is enabled. By default,
the daily backup of log files is not enabled (0).
Note: Because the time is checked regularly, when
MsgDailyLog is set there is a slight reduction in
performance.

On startup
only

MsgTimeLog
string

-msgtimelog string Specifies the time after which the daily log is created.
The default is 0000 (midnight).

If MsgDailyLog set to 0, this value is ignored.

On startup
only

Name string -name string Specifies the name of the probe. This value determines
the names of the properties file, rules file, message log
file, store-and-forward file, and raw capture file.

Note: You can specify alternative file names by using
the PropsFile, RulesFile, MessageLog, SAFFileName, and
RawCaptureFile properties. If you want to set any of
these file names in the properties file, they must be
specified after the Name property. Otherwise, the Name
property will override any previous setting of the files
names.

The value of the Name property is included in the
primary key of the probe entry in the registry.probes
ObjectServer table.

On
reconnection

NetworkTimeout
integer

-networktimeout integer Specifies the length of time (in seconds) that the probe
can wait without a response; after this time, the
connection to the ObjectServer times out. The maximum
value is 2147483, and the default is 0, meaning that no
timeout occurs.

If a timeout occurs, the probe attempts to connect to the
backup ObjectServer, identified by the ServerBackup
property.

If a timeout occurs and no backup ObjectServer is
specified, the probe enters store-and-forward mode.

In a standard failover setup, the value of the
NetworkTimeout property must be less than the value of
the PollServer property.

The NetworkTimeout setting overrides the operating
system-level TCP/IP timeout setting.

On
reconnection

Chapter 6. Common probe properties and command-line options 119

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

NHttpd.Access
Log string

-nhttpd_accesslog
string

Specifies the name of the log file where the server logs
all requests that it processes.

The default is access.log.

On startup
only

NHttpd.
Authenticati
onDomain string

-nhttpd_authdomain
string

Specifies the authentication domain that is used when
requesting authentication details over the HTTP or
HTTPS connection.

The default is omnibus.

On startup
only

Nhttpd.Basic
Auth string

-nhttpd_basicauth
string

Specifies the user-password combination that is
permitted for connections to the HTTP interface.

Ensure that the password associated with the user name
is encrypted as an AES-128 hash. Use nco_crypt with
the -aes option to encrypt the password.

Specify the password in the format
"username:password", where username is any set of
characters that does not include a colon (:) and password
is the AES-128 hash of the password.

The default value of this property is "", which accepts
any user credential as valid.

On startup
only

NHttpd.Document
Root string

-nhttpd_docroot string Specifies the document root of the embedded Web
service requests.

The default is ./.

On startup
only

NHttpd.Enable
File
Serving TRUE |
FALSE

-nhttpd_enablefs TRUE
| FALSE

Use this property to enable default file serving by the
probe. This allows the probe to act as a simple HTTP
server that serves files from the local filesystem.

The default is FALSE.

On startup
only

NHttpd.Enable
HTTP TRUE |
FALSE

-nhttpd_enablehttp Use this property to enable the use of the HTTP port.

The default is TRUE.

On startup
only

NHttpd.Expire
Timeout string

-nhttpd_expire
timeout string

Specifies the maximum time, in seconds, that an
HTTP/1.1 connection remains idle before it is dropped.

The default is 15 seconds.

On startup
only

120 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

NHttpd.
Listening
Hostname string

-nhttpd_hostname string Specifies the listening host name or IP address that can
be used as the hostname part of a URI to the probe's
HTTP or HTTPS interface.

The probe registers the value of this property in the
Hostname column of the registry.probes table.

You can use this property to specify a different host
name to the local default host name. You might need to
do this if the host name that is automatically resolved is
not a fully qualified domain name (FQDN) or if there is
no remote host name resolution for the name. For
example, this can happen with machines that are
provisioned as virtual machines within a private virtual
sub-net, or with machines that have multiple network
cards, or with machines that are configured without a
local domain setting.

The default is the host name of the local computer. You
can check the host name using the operating system
hostname command.

On startup
only

NHttpd.
Listening
Port integer

-nhttpd_port integer Specifies the port on which the probe listens for HTTP
requests.

The default is 8080.

On startup
only

NHttpd.NumWork
Threads integer

-nhttpd_numworkthrs
integer

Specifies the maximum number of worker threads that
can be used to service incoming HTTP or HTTPS
requests.

Use this property to specify how many HTTP or HTTPS
requests the probe can handle simultaneously. Each
request of the probe is handled in a single worker
thread, which is returned to the thread pool after the
request has been serviced.

The default is 5.

On startup
only

NHttpd.SSL
Certificate
string

-nhttpd_sslcert string Specifies the name of the Secure Sockets Layer (SSL)
certificate of the server.

The default is cacert.pem.

On startup
only

NHttpd.SSL
Certificate
–Pwd string

-nhttpd_sslcertpwd
string

Specifies the password required to access the SSL
certificate file.

The default is "".

On startup
only

NHttpd.SSL
Enable TRUE |
FALSE

-nhttpd_sslenable Use this property to enable the use of SSL support.

The default is FALSE.

On startup
only

NHttpd.SSL
Listening
Port integer

-nhttpd_sslport integer Specifies the port on which the probe listens for HTTPS
requests.

The default is 0.

On startup
only

Chapter 6. Common probe properties and command-line options 121

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

OldTimeStamp
TRUE | FALSE

-oldtimestamp TRUE |
FALSE

Specifies the timestamp format to use in the log file.

Set the value to TRUE to display the timestamp format
that is used in Tivoli Netcool/OMNIbus V7.2.1, or
earlier. For example: dd/MM/YYYY hh:mm:ss AM or
dd/MM/YYYY hh:mm:ss PM when the locale is set to
en_GB on a Solaris 9 computer.

Set the value to FALSE to display the ISO 8601 format in
the log file. For example: YYYY-MM-DDThh:mm:ss,
where T separates the date and time, and hh is in
24-hour clock. The default is FALSE.

On startup
only

PeerHost string -peerhost string Specifies the host name of the network element acting
as the counterpart to this probe instance in a
peer-to-peer failover relationship. The default is
localhost.

On startup
only

PeerPort integer -peerport integer Specifies the port through which the master and slave
communicate in a peer-to-peer failover relationship. The
default port is 9999.

On startup
only

PollServer
integer

-pollserver integer If connected to a backup ObjectServer because failover
occurred, a probe periodically attempts to reconnect to
the primary ObjectServer. This property specifies the
frequency in seconds at which the probe polls for the
return of the primary ObjectServer. It does this by
disconnecting and then reconnecting to the primary
ObjectServer if available, or to the secondary
ObjectServer if the primary is not available. Polling is
the only way that the probe can determine if the
primary ObjectServer is available. The default is 0,
meaning that no polling occurs.

When a probe connects to an ObjectServer, the probe
checks the BackupObjectServer property setting of the
ObjectServer to which it is connecting. Polling occurs
only if this property is set to TRUE, indicating a backup
ObjectServer.
Note: A probe can go into store-and-forward mode
when the primary ObjectServer becomes unavailable.
The first alert is not forwarded to the backup
ObjectServer until the second alert opens the connection
to the backup. If PollServer is set to less than the
average time between alerts, the ObjectServer
connection is polled before an alert is sent, and the
probe does not go into store-and-forward mode. For
controlled failback, set PollServer to 0 to disable
automatic failback of a probe that is connected to a
failover pair of ObjectServers.

On
reconnection

ProbeWatch
Heartbeat
Interval integer

-probewatchheart
beatinterval integer

Generates a ProbeWatch Heartbeat event if this property
is set to a positive number. The number defines the
interval (in seconds) at which the heartbeats are
generated. If set to 0 (zero), or a negative number, no
ProbeWatch heartbeats are generated.

Immediate

Props.Check
Names TRUE |
FALSE

N/A When TRUE, the probe does not run if any specified
property is invalid. The default is TRUE.

On startup
only

122 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

PropsFile string -propsfile string Specifies the name of the properties file. The default is
$OMNIHOME/probes/arch/probename.props, where
probename is the name of the probe and arch represents
the operating system.

On startup
only

RawCapture 0 |
1

-raw

-noraw

Controls the raw capture mode. Raw capture mode is
usually used at the request of IBM Software Support. By
default, raw capture mode is disabled (0).
Note: Raw capture can generate a large amount of data.
By default, the raw capture file can grow indefinitely,
although you can limit the size using the
MaxRawFileSize property. Raw capture can also slow
probe performance due to the amount of disk activity
required for a busy probe.

Immediate

RawCaptureFile
string

-capturefile string Specifies the name of the raw capture file. The default is
$OMNIHOME/var/probename.cap, where probename is the
name of the probe.

Immediate

RawCaptureFile
Append 0 | 1

-rawcapappend

-norawcapappend

Specifies that new data is appended to the existing raw
capture file, instead of overwriting the file.

By default, the file is overwritten (0).

Immediate

RegexpLibrary
string

-regexplib string Defines which regular expression library to use. Possible
values are: NETCOOL and TRE.

The default value of TRE enables the use of the extended
regular expression syntax on single-byte and multi-byte
character languages. This setting results in decreased
system performance.

The NETCOOL value is useful for single-byte character
processing and provides optimal system performance.

On startup
only

RetryConnection
Count integer

N/A Specifies the number of events the probe processes in
store-and-forward mode before trying to reconnect to
the ObjectServer. The default is 15.

On
reconnection

RetryConnection
TimeOut integer

N/A Specifies the number of seconds that the probe
processes events in store-and-forward mode before
trying to reconnect to the ObjectServer. The default is
30.

On
reconnection

Chapter 6. Common probe properties and command-line options 123

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

RollSAFInterval
integer

-rollsafinterval integer Used when the probe is connected to an ObjectServer,
and circular store and forward is enabled by setting
StoreAndForward to 2.

Specifies the time interval in seconds after which a
store-and-forward file is rolled over to the next file in
the pool of two files that are used to store a copy of
events that are sent to a connected ObjectServer.

To minimize event loss during failover and failback, set
the time interval to a value that is greater than or equal
to the granularity of the ObjectServer. In case of failure,
the probe will have a copy of events from the last
granularity period, which can be replayed to the backup
ObjectServer.

The default is 90 seconds, which is 1.5 times greater
than the default granularity period of 60 seconds that is
set for an ObjectServer.

Immediate

RulesFile string -rulesfile string Specifies the name and location of the rules file.

This can be a file name or Web address that specifies a
rules file located on a remote server that is accessible
using HTTP.

The default is $OMNIHOME/probes/arch/probename.rules,
where probename is the name of the probe.

On
reconnection

SAFFileName
string

-saffilename string Specifies the name of the store-and-forward file.

The default is $OMNIHOME/var/probename.store, where
probename is the name of the probe.

A .servername extension is automatically appended to
the file name, where servername is the name of the target
ObjectServer.

A separate store-and-forward file is created for each
registered target ObjectServer.

On startup
only

SAFPoolSize
integer

-safpoolsize integer Used when the probe is not connected to an
ObjectServer.

Specifies the number of store-and-forward files in a pool
of files that can be used to store alerts. The default is 3.

Each file rolls over to the next when it reaches the
maximum size specified by the MaxSAFFileSize
property.

Immediate

SecureLogin 0 |
1

-securelogin

-nosecurelogin

Specifies whether the probe uses an encrypted secure
login to access the host system:

v 0: The probe does not use an encrypted secure login.

v 1: The probe uses an encrypted secure login.

The default is 0.

Note: Secure login is not available in FIPS 140–2 mode.
SSL is more secure than secure login.

On
reconnection

124 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

Server string -server string Specifies the name of the primary ObjectServer or the
proxy server to which alerts are sent. The default is
NCOMS.

If you want the probe to operate in circular
store-and-forward mode, do not specify a virtual
ObjectServer definition as the value of this property.

On
reconnection

ServerBackup
string

N/A Specifies the name of a backup ObjectServer to which
the probe should connect if the primary ObjectServer
connection fails. If NetworkTimeout is set, use
ServerBackup to identify a backup ObjectServer.

If you want the probe to operate in circular
store-and-forward mode, do not specify a virtual
ObjectServer definition as the value of this property.

On
reconnection

SingleThreaded
Comms TRUE |
FALSE

-singlethreadedcomms Specifies whether multithreaded or single-threaded
processing is used to process and send alerts to the
target ObjectServers. The default is FALSE, which enables
multithreaded communication.

You can also use the SingleThreadedComms property to
enforce an order for sending alerts to ObjectServers.
With multithreaded processing, alerts are
simultaneously sent to the target ObjectServers. In
single-threaded mode, the order is defined by the order
in which the registertarget statements are listed in the
rules file.

On
reconnection

SSLServer
CommonName
string1,...

N/A If the probe is connecting to an ObjectServer using SSL,
and the Common Name field of the received certificate
does not match the name specified by the Server
property, use this property to specify a
comma-separated list of acceptable SSL Common
Names.

The default setting is to use the Server property.

On
reconnection

StoreAndForward
integer

-saf integer Controls the store and forward operations. Possible
values for the property are:

v 0: Do not use store and forward.

v 1: Use legacy store and forward, which stores alerts
in a store-and-forward file only if the alerts cannot be
sent to an ObjectServer.

v 2: Use circular store and forward, which stores all
generated alerts in a rolling pool of store-and-forward
files while the probe is connected to an ObjectServer.
If the probe is disconnected, the circular store and
forward behavior is similar to the legacy store and
forward behavior.

By default, the legacy store-and-forward mode is
enabled (1).

On
reconnection

Chapter 6. Common probe properties and command-line options 125

Table 30. Common probe properties and command-line options (continued)

Property Command-line option Description Update type

StoreSAFRejects
0 | 1

-storesafrejects

-dontstoresafrejects

Specifies whether the probe should continuously save
the individual corrupted store-and-forward records for
analysis.

If set to 1, corrupted store-and-forward records are
continuously saved. The default is 0.

Use this property in conjunction with the
KeepLastBrokenSAF property.

Immediate

N/A -version Displays version information and exits. On startup
only

126 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts:
“Probe property versus probe command-line option usage” on page 6
Each probe property has a corresponding command-line option.
“Probe property types” on page 6
Probe properties can be divided into two categories: common properties and
probe-specific properties.
“Store-and-forward mode for probes” on page 11
Probes can continue to run if the target ObjectServer is down. During this period,
the probe switches to store mode. The probe reverts to forward mode when the
ObjectServer is functional again.
“Raw capture mode for probes” on page 14
You can use the raw capture mode to save the complete stream of event data
acquired by a probe into a file, without any processing by the rules file. This can
be useful for auditing, recording, or debugging the operation of a probe.
“Secure mode for probes” on page 15
You can run the ObjectServer in secure mode. When you start the ObjectServer
using the -secure command-line option, the ObjectServer authenticates probe,
gateway, and proxy server connections by requiring a user name and password.
“Peer-to-peer failover mode for probes” on page 16
Two instances of a probe can run simultaneously in a peer-to-peer failover
relationship. One instance is designated as the master. The other instance acts as a
slave and is on hot standby. If the master instance fails, the slave instance is
activated.
Related tasks:
Chapter 5, “Remotely administering probes,” on page 91
You can use an HTTP interface that runs over an HTTP or HTTPS server contained
in the standard probe C library (libOpl) to remotely monitor and manage probes.
This functionality can be used against all probes that are compatible with Tivoli
Netcool/OMNIbus V7.4. A common URI is provided that contains resources for
performing administration tasks.
“Rereading the rules file” on page 60
Because probes read the rules file only on startup, you must force the probe to
reread the rules whenever you make changes to it. The probe processes the reread
request only on receipt of a new event. If the probe is idle or is already processing
an event, it will not reread the rules file until a new event is received.
Related reference:
“Multithreaded processing of alert data” on page 52
When a probe rules file is processed, multithreaded processing is used by default
to apply probe rules to the raw event data that is acquired from the event source,
and to send the generated alerts to the registered ObjectServers. Note that this
multithreaded processing is different from the multithreaded or single-threaded
event capture that is implemented in some classes of probes.
“Lookup table operations” on page 43
Lookup tables provide a way to add extra information in an event. A lookup table
consists of a list of keys and values.

Chapter 6. Common probe properties and command-line options 127

128 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 7. Netcool MIB Manager

Netcool MIB Manager is an IBM® Eclipse-based application that you can use to
parse Simple Network Management Protocol (SNMP) management information
base (MIB) files, from which you can generate Netcool rules files. It is intended as
a replacement for the mib2rules utility.

Netcool MIB Manager has the following features:
v It imports SNMP MIB files and resolves MIB dependencies to build an Object

Identifier (OID) tree.
v It can export some or all of the imported SNMP objects to Netcool rules files and

other file formats.
v It includes the base MIBs and RFC MIBs most commonly required by other MIB

files.
v It includes device definitions to enable device-centric grouping of imported MIB

modules.
v It can filter and search MIB Modules and the OID tree by object name or OID.
v It can generate SNMP traps to send to the SNMP Probe (nco_p_mttrapd) or other

SNMP agents.
v It has a command-line interface that you can use to import MIB data and export

rules files. You can issue commands manually or call them programmatically.

Starting MIB Manager
You can start MIB Manager from the command line. It is not designed to be run
under process control or as a Windows service.

About this task

To start MIB Manager, use the following command:
v On UNIX or Linux: $NCHOME/omnibus/bin/nco_mibmanager
v On Windows: %NCHOME%\omnibus\bin\nco_mibmanager.bat

MIB Manager also has a command-line interface that you can use manually or call
programmatically.

Note:

See the Supported Operating Systems documentation for information about the
requirements for running MIB Manager on the AIX and Solaris operating systems.

This requirements information is available in the Tivoli Netcool/OMNIbus Installation
and Deployment Guide.

On all UNIX and Linux operating systems, ensure that the $DISPLAY environment
variable is set to a functioning X11 server before starting MIB Manager.

© Copyright IBM Corp. 1994, 2013 129

Related reference:
“MIB Manager command-line options” on page 146
MIB Manager has a command-line utility that you can use to import MIB data and
export rules files. You can issue commands manually or call them
programmatically.

Using Netcool MIB Manager
You can use MIB Manager to parse MIB modules and create Netcool rules files.

MIB Manager includes a set of base MIBs and RFC MIBs, in the
$NCHOME/omnibus/platform/arch/mibmanager/workspace/mibs directory. These MIBs
are supplied to enable you to import additional MIBs. MIB Manager automatically
uses these bundled MIBs to resolve dependencies during the import of new MIBs.
The bundled MIB modules are visible in the MIB Modules view when you start
MIB Manager for the first time.

MIB Manager also includes XML data files that represent an import of the bundled
base MIBs. MIB Manager uses these XML files to store the MIB data it imports
from the raw text MIB files.

Add your MIBs to a directory that can be accessed from the server from which the
MIB Manager is started. All standards-based MIBs must be installed in a separate
directory which can be placed in the search path for easy dependency resolution.
By default, the basic SNMP MIBs are installed in the $NCHOME/omnibus/platform/
arch/mibmanager/workspace/mibs/base directory, and all RFC MIBs are installed in
the $NCHOME/omnibus/platform/arch/mibmanager/workspace/mibs/rfc directory.

The Netcool MIB Manager window

When you start MIB Manager, the following elements are displayed in the initial
MIB Manager window: several elements are displayed in the initial MIB Manager
window. The following figure shows these elements.

Figure 4. MIB Manager initial window

130 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

�1� Toolbar
Provides access to the most frequently used MIB Manager functions.

�2� Perspectives
You can view MIB data in one of two perspectives, MIB Manager or
mib2rules. The MIB Manager perspective is the default perspective. The
mib2rules perspective focuses on Object Identifiers (OIDs) and is provided
for users who are familiar with the mib2rules utility.

�3� Device view
Use this view to create, update, and delete MIB Manager devices.

�4� Details view and Console view
The Details view displays the details of selected MIB elements. The
Console view shows all log messages that are generated by MIB Manager
while the current instance is running.

�5� MIB Modules
Use this view to search for and delete MIB modules, and to search for
specific MIB values.

�6� OID Tree view
This view gives a representation of all MIB objects that are in the imported
MIB modules.

The MIB Modules view
The MIB Modules view provides a representation of all the imported MIB modules
and allows you to search for MIB modules, delete MIB modules, and to search for
specific MIB values.

You move through the MIB Modules view by expanding and collapsing nodes
within the MIB tree. The top level branches of the MIB tree contain the names of
the MIB modules, and contained within each MIB module branch are the other
elements which comprise the MIB.

You can filter the data in the MIB Modules view by selecting one of the following
options from the View drop-down list:
v All

v Modules

v Enumerations

v Textual Conventions

v Syntaxes

v Imports

v Exports

v Columns

v Descriptions

To search theMIB Modules view for a specific value, type your text in the Search
field and either press Enter or click (Search).

MIB Manager begins the search from the selected item or, if no item is currently
selected, from the first item in the list. To find the next matching item from the list,
continue to click (Search).

When an item is located, it is automatically highlighted and displayed in the MIB
Modules view.

Chapter 7. Netcool MIB Manager 131

In the Search field, specify a valid regular expressions or enter plain text to
represent a complete or partial object name.

To delete one or more MIB modules, right-click the selected MIB module(s), and
then from the pop-up menu, select Delete. The selected MIB module is deleted
from MIB Manager. However, the original MIB source files, supplied for the MIB
import, are not be deleted.

Note: You must only delete a MIB module if it contains errors and there is a new
replacement version of the MIB module. Deleting MIB modules using this method
can result in missing MIB dependencies. Incomplete rules files can also be
generated during the export process together with warning or error messages in
the log file.

The following table lists the MIB Modules view icons and describes what each one
represents.

Table 31. The MIB Modules view icons and the objects they represent

Icon Representation

EXPORTS

EXPORT

IMPORTS

IMPORT

OBJECT IDENTIFIER, OBJECT-IDENTITY

AGENT-CAPABILITIES

MODULE-COMPLIANCE

MODULE, MODULE-IDENTITY

OBJECT-GROUP

NOTIFICATION-GROUP

TRAP-TYPE (v1 trap)

NOTIFICATION-TYPE (v2 trap)

Generic OBJECT-TYPE

COUNTER

COUNTER32

COUNTER64

132 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 31. The MIB Modules view icons and the objects they represent (continued)

Icon Representation

GAUGE

GAUGE32

INTEGER

INTEGER32

IpAddress

NetworkAddress

OID

OCTET STRING

SEQUENCE (table)

SEQUENCE (Entry, table row)

TIMETICKS

TEXTUAL-CONVENTION

The OID Tree view
The Object Identifier (OID) Tree view provides a representation of all MIB objects
that are located in the imported MIB modules.

You can filter the data in the OID Tree view by selecting one of the following
options from the View drop-down list:
v All

v Traps/Notifications

v Objects

v Modules

To search the OID Tree view for a specific value, type your text in the Search field
and either press Enter or click (Search).

MIB Manager begins the search from the selected item or, if no item is currently
selected, from the first item in the list. To find the next matching item from the list,
continue to click (Search).

When an item is located, it is automatically highlighted and displayed in the OID
Tree view.

Chapter 7. Netcool MIB Manager 133

In the Search field, specify a valid regular expressions or enter plain text to
represent a complete or partial object name, or OID. The number displayed on
each branch node is the last digit of the OID for that particular object.

The following table lists the OID Tree view icons and describes what each one
represents.

Table 32. The OID Tree tree icons and the associated objects they represent

Icon Representation

OBJECT IDENTIFIER, OBJECT-IDENTITY

AGENT-CAPABILITIES

MODULE-COMPLIANCE

MODULE, MODULE-IDENTITY

OBJECT-GROUP

NOTIFICATION-GROUP

TRAP-TYPE (v1 trap)

NOTIFICATION-TYPE (v2 trap)

Generic OBJECT-TYPE

COUNTER

COUNTER32

COUNTER64

GAUGE

GAUGE32

INTEGER

INTEGER32

IpAddress

NetworkAddress

OID

OCTET STRING

134 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 32. The OID Tree tree icons and the associated objects they represent (continued)

Icon Representation

SEQUENCE (table)

SEQUENCE (Entry, table row)

TIMETICKS

TEXTUAL-CONVENTION

Importing MIB data
How to import SNMP MIB data into MIB Manager.

Before you begin

In the Preferences window, specify locations for the MIBs that are regularly used
by the vendor MIBs. Ensure your MIBs are located in vendor-specific directories,
and that any associated equipment numbers are located in subdirectories. Also
ensure that these directories do not contain any non-MIB text files. Most MIBs are
installed into the $NCHOME/omnibus/platform/arch/mibmanager/workspace/mibs/
base directory, and all the RFC MIBs are installed in the $NCHOME/omnibus/
platform/arch/mibmanager/workspace/mibs/rfc directory.

The MIBs that you are importing might be dependant on other MIBs. To ensure
that MIB Manager can search for dependant MIBs while performing the import, set
the search path to the locations of the dependant MIB files.

Procedure

To import MIB data:
1. Click Import or, from the menu, click File > Import.
2. In the Directory field, specify the location of the MIB modules that you want to

import.
3. To make MIB Manager parse all the MIBs found in available subdirectories,

select the Traverse subdirectories check box.
4. Click Import.

The Import Status window is displayed as the MIB modules are parsed. The
left side of this window displays the number of different MIB object types as
each one is discovered during the parsing of the imported MIB files. After the
MIBs are parsed, MIB Manager reviews each MIB module and parses all the
MIB objects that it locates. After all the objects are parsed, MIB Manager
reviews each MIB and processes the import statements to locate any referenced
MIB modules. If any referenced MIB modules cannot be located in previously
imported MIB modules, MIB Manager searches the directories specified in the
search path. The right side of the Import Status window displays icons to show
the status of any import statements found in the imported MIBs, as shown in
the following table:

Chapter 7. Netcool MIB Manager 135

Icon Description

Indicates that the import statement has not
been resolved.

Indicates that the import statement has been
resolved.

Indicates that the MIB Module referenced in
the import statement could not be resolved.

You can expand the import statement tree to display which MIB modules are
using import statements to reference other MIB modules.
Import Complete is displayed at the top of the status frame when all the
imported MIB files have been processed. You can view the all the status
messages generated during the import by clicking View Status History and
using the View drop-down list to select a filter option.

5. Click Dismiss to close the Import Status window.

Results

The MIB Modules view refreshes automatically to show the newly imported MIB
module names. The OID Tree view refreshes automatically to show all the newly
imported MIB objects To rebuild the tree, MIB Manager searches the parent nodes
of the tree (iso, ccitt, and joint-iso-ccitt) recursively for child nodes until it
finds a child node that has no associated children. If no errors are detected, a fully
populated MIB tree is displayed in the OID Tree view, which contains the parsed
objects.

Clicking an object in the OID Tree view automatically displays the object in the
MIB Modules view. The Details view displays detailed information about the
selected object.

The imported MIB modules are stored in an xml file which represents the structure
of that MIB module. The xml files are located in the workspace/data directory.

If unresolved import statements are detected, contact the vendor responsible for
the missing MIB or MIBs, add the missing file or files to the search path and
repeat the import.

Note:

Vendors sometimes specify duplicate object names, or specify an object name that
is identical to an object name specified in an RFC.

For example, an object named system is defined in module SNMPv2-MI' with OID
1.3.6.1.2.1.1 and another object named system is defined in module
WINDOWS-NT-PERFORMANCE, with OID 1.3.6.1.4.1.311.1.1.3.1.1.23. Also, an
object named sysDescr is defined as system.1 in module SNMPv2-MIB and
another object named sysFileReadOperationsPerSec is defined as system.1 in
module WINDOWS-NT-PERFORMANCE. In this case, it is unclear which parent
object the child objects are associated with.

When an object with a duplicate parent name is located, MIB Manager attempts to
find the parent that is defined in the same MIB module. In the previous example,
this is WINDOWS-NT-PERFORMANCE. If neither of the parents are defined in the
same MIB module, MIB Manager then searches to see if the parent is defined in

136 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

other MIB modules on which the object is dependant. MIB Manager also identifies
other MIB modules that reference the parent and selects the most commonly
referenced parent name. However, this could result in an incorrectly populated
MIB tree and incorrectly calculated OIDs. Therefore, each time MIB Manager finds
a duplicate object name, it logs a warning and records the actions taken to resolve
the duplication in a debug file.
Related reference:
“Setting directory preferences” on page 143
Use the directory preferences to specify the directories used for storing imported
MIBs, MIB data, and exported rules files.
“Setting search preferences” on page 145
This section describes how to define the MIB Manager preferences that are used to
search for the MIB files.

Exporting MIB data
How to export SNMP MIB data from MIB Manager to a variety of formats.

Procedure

To export MIB data:
1. Click Export or, from the menu, click File > Export.
2. In the Directory field, specify the destination directory for the exported files.
3. In the File Type field, specify a file type for the exported files.

You must use the Netcool Knowledge Library (NCKL) whenever possible,
because the NCKL rules files are based on the functionality of the device. When
using NCKL, you must specify the Netcool Knowledge Library version 3.x file
type. This enables the generated files to be added to the existing Netcool
Include Library installations.
The following options are available from the File Type drop-down list:

File type Description

CSV Select this option to specify that all the
object data is loaded into CSV files, so that it
can be viewed using a spreadsheet
application.

CSV Trap Objects Select this option to specify that all trap data
and associated variable bindings object data
is loaded into a single CSV file, so that it can
be viewed using a spreadsheet application.

Chapter 7. Netcool MIB Manager 137

File type Description

HTML with frames Select this option to create a web page that
is suitable for publishing.

The selected MIB tree view is displayed on
the left side of the generated web page. You
can navigate through the MIB tree view by
expanding and collapsing nodes within the
MIB tree. When an element is selected from
the MIB tree, its associated information is
displayed on the right side of the web page.

This format can often create a large number
of export files, each containing a HTML file
for each object listed in the MIB tree. The
target directory can be zipped up and
located under any web server, or the pages
can be viewed directly from a disk by
opening the index.html file created in the
export directory.

If you want to use individual HTML files
with a web browser, export to HTML with
frames and then use the files in the data
sub-directory located under the export
directory.

HTML without frames Select this option to create a single file
named oids.html. This file will contain a list
of all objects selected for output, each
separated by horizontal rules (using the <HR>
tag). Each OID is enclosed by an anchor tag
so that when it is loaded, the browser
automatically scrolls down to any OID that
includes a hash symbol (#) in the URL, for
example: file:c:/oids.html#1.3.6.1.4.1.9.

This file can become very large if you are
exporting a large number of objects.
Therefore, this format should only used for
exporting a small number of traps.

Netcool Lookup Table Select this option to output all specified
values in a tabbed list, with the OIDs
displayed in the left column and the object
names displayed in the right column. This is
suitable for inclusion into any rules file.

Netcool Include Library Select this option to create separate include
files for each enterprise, and to generate a
single file for the generic traps (that is, for
any traps that are not located below the
enterprise sub-tree). It is assumed that the
include files are inserted into existing
snmp.rules files, either those previously
created by MIB Manager or those created by
the Netcool Include Library (NCIL).

Netcool Knowledge Library version 1.1 Select this option to output files from MIB
Manager. The files will be included in an
existing Netcool Knowledge Library
implementation.

138 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

File type Description

Netcool Knowledge Library version 3.x Select this option to output files from MIB
Manager. The files will be included in an
existing Netcool Knowledge Library
implementation.

Standalone Rules Select this option to create a single rules file
that contains all the selected traps. You can
specify this file in the properties file of any
Tivoli Netcool/OMNIbus SNMP trap probe.

Individual Text Files The Individual Text Files format is used for
the Netcool Event List right-click menu.

When you export to individual text files,
each OID is output to a separate text file, for
example 1.3.6.1.4.1.9.1.1.txt. An external
tool can then be added to the right-click
menu that uses nco_message to display all
object information for an event that has the
OID specified in a field, for example: cat
1.3.6.1.4.1.9.1.txt |nco_message stdin
title "trap info".

Tivoli Universal Agent The Tivoli Universal Agent format exports
.mdl and trapcnfg files based on the
selected content.

Multiple sub-trees can be selected when this
format is selected for exporting files. If
multiple sub-trees are selected, .mdl and
trapcnfg files are created for all the objects
located below a selected item in the MIB
tree.
Note: The first three letters of the
application name, following the //APPL tag
in the .mdl file, must be unique within an
enterprise. MIB Manager tries to adhere to
this requirement but it cannot be aware of
any other agents that may be running. You
may need to modify the .mdl file to ensure
that the application name is unique in the
enterprise.

4. In the Scope field, use the drop-down list to specify whether MIB Manager
outputs traps only, objects only, or all OIDs.
The options available depend on the file type that you are exporting.

5. To limit the number of objects included in the generated file, select the Selected
Subtree(s) only checkbox.

6. Click Export to export the files to the destination directory.
Related reference:
“Setting export preferences” on page 143
This section describes how to set your rules file export preferences.

Chapter 7. Netcool MIB Manager 139

Editing SNMP traps
How to edit SNMP traps.

About this task

In the Details view, you can edit the following fields of an SNMP trap:
v @Severity
v @Type
v @ExpireTime
v CODEBLOCK

Note: SNMP does not provide standard mechanisms for specifying set (@Type) or
clear (@Severity) information. You must specify this information manually.

In the Details view, double-click a field value to make it editable. After making a
change to a field, click to save the change or click to cancel the change.

Procedure

To edit an SNMP trap:
1. In either the MIB Modules view or the OID Tree view, select a trap.

Detailed information about the trap is displayed in the Details view.
2. To edit the @Severity field, double-click the field value and choose a new value

from the drop-down list.
3. To edit the @Type field, double-click the field value and choose a new value

from the drop-down list.
4. To edit the @ExpireTime field, double-click the field value and enter a new

time period (in seconds, minutes, hours, or days).
5. To edit the CODEBLOCK field, double-click the field value (even if the field is

empty) and enter a new block of code.

Generating SNMP traps
How to generate SNMP traps. This functionality can also be used for testing rules
files generated by MIB Manager.

Procedure

To generate an SNMP trap:
1. Click Trap.
2. In the Destination Address field, specify the host name or IP address of a

computer running an SNMP Trapd service.
3. In the Destination Port field, specify the UDP port that the SNMP Trapd

service is listening on.
4. In the Community field, specify a valid string for the Trapd manager.
5. Depending on the type of trap that you are generating, a Variable Bindings

section might be visible in the Generate an SNMP Trap window. The available
fields in the Variable Bindings section also depend on the type of trap being
generated.
Mouse over the Variable Bindings field names for details of the field value
syntax. You can specify multiple values, separated by commas. These values
will be randomly chosen to build the trap.

140 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

6. In the Repeat Metric field, specify the number of traps (from 1 to 1000) that
can be generated.
If you specify a large number, traps are generated in rapid succession and can
cause an alarm storm at the Trapd manager. For values greater than one (> 1),
and for values that are specified as semicolon separated lists, MIB Manager
randomly selects from the specified lists and generates traps with the arbitrary
values presented as varbinds.

7. Click Execute to generate the trap.

Results

The Result field in the Generate an SNMP Trap window will indicate whether the
trap was sent successfully.

Using MIB Manager devices
A MIB Manager device is used to group associated MIB Modules and define all the
objects required for exporting.

MIB Manager devices are displayed in the Device view. Select a device from the
Device tree to display the manufacturer, the model number, and the OS version of
the device.

Creating a new device
How to create a new device.

Procedure

To create a new device:
1. In the MIB Modules view, select at least one MIB Module and then click

(Create Device).
2. In the Manufacturer field, select a device manufacturer from the drop down

list.
The Model and OS Version fields are populated with the available options.

3. In the Model field, select an option from the drop down list.
If no models are available, enter a descriptive model name.

4. In the OS Version field, select an option from the drop down list.
If no OS versions are available, enter a descriptive OS version name.

5. In the Mapped Mib Modules field, select the MIB modules that you want to
associate with the new device.

6. Click OK to create the device.

Results

The new device is displayed in the Device view.

Chapter 7. Netcool MIB Manager 141

Updating a device
How to update a device.

Procedure

To update a device:
1. In the Device view, select a device and expand its subnodes until the OS

version is visible.
2. Select the OS version and then click (Edit Device).
3. In the Manufacturer field, select a device manufacturer from the drop down

list.
The Model and OS Version fields are populated with the available options.

4. In the Model field, select an option from the drop down list.
If no models are available, enter a descriptive model name.

5. In the OS Version field, select an option from the drop down list.
If no OS versions are available, enter a descriptive OS version name.

6. In the Mapped Mib Modules field, select the MIB modules that you want to
associate with the new device.

7. Click OK to update the device details.

Results

The updated device details are displayed in the Device view.

Deleting a device
How to delete a device.

Procedure

To delete a device:

In the Device view, select the device and then click (Delete Device).
To delete multiple devices, hold down the Ctrl+Alt keys, select the elements using
the left mouse button, and then click (Delete Device).

Results

The device is deleted and removed from the Device view.

Configuring global preferences
You can configure several MIB Manager global preferences from the Preferences
window.

To configure the MIB Manager global preferences, click Preferences or, from the
menu, click File > Preferences.

In the Preferences window, you can configure directory, export, general, logging,
and search preferences.

142 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Setting directory preferences
Use the directory preferences to specify the directories used for storing imported
MIBs, MIB data, and exported rules files.

To set the directory preferences, click Preferences or, from the menu, click File
> Preferences, and then from the left pane of the Preferences window, click
Directory.
v In the Data Directory field, specify where the imported MIBs will be stored as

XML files. The default location is $NCHOME/omnibus/platform/arch/mibmanager/
workspace/data.

v In the Export Directory field, specify where the exported files are generated. A
subdirectory based on the type of export is created. The default location is
$NCHOME/omnibus/platform/arch/mibmanager/workspace/export.

v In the Import Directory field, specify where the imported MIB files are located.
The default location is $NCHOME/omnibus/platform/arch/mibmanager/workspace/
mibs.

Related tasks:
“Importing MIB data” on page 135
How to import SNMP MIB data into MIB Manager.

Setting export preferences
This section describes how to set your rules file export preferences.

To set the directory preferences, click Preferences or, from the main menu, click
File > Preferences, and then from the left pane of the Preferences window, click
Export.
v In the Include path field, specify the location of the rules that were installed

with the Netcool Include Library (NCiL) rules file packages (if they are
installed). This option is only required if you are exporting data in the Netcool
Include Library file format and when the directory path must point to included
rules. As a result, the new rules files do not need to be edited manually. The
default value is $NCHOME/omnibus/probes/arch.

v In the Default export file format field, specify either a Windows/DOS format
(CRLF) or Unix format (LF) for the output file. This property allows you to
create rules on a Windows machine and copy them to a UNIX machine without
running a utility such as dos2unix.

Note: This selection applies to all output files and is not restricted to the rules
files. The default value is Unix format.

v In the Alert types field, specify the drop-down list options displayed when a
trap's @Type field is edited in the Detail view.

The following options are only available if the NCKL export format was previously
selected:
v If the Include varbind descriptions check box is selected, the varbind

descriptions are added as comment documentation. The default value is enabled.
v If the Calculate a better value for @AlertKey check box is selected, the

@AlertKey value is generated from a varbind parent object. The default value is
enabled.

v If the Set @Agent once per enterprise check box is selected, the @Agent field is
set for each enterprise. The @Agent field is based on the names of the MIB
modules being processed for the rules file. The default value is enabled.

Chapter 7. Netcool MIB Manager 143

v If the Add @Class template check box is selected, the @Class field is set. If the
Add @Class template check box is selected, the @Class field is set to 300. The
default value is enabled.

Related tasks:
“Exporting MIB data” on page 137
How to export SNMP MIB data from MIB Manager to a variety of formats.

Setting general preferences
Use the general preferences to specify the MIB import options.

To set the directory preferences, click Preferences or, from the main menu, click
File > Preferences, and then from the left pane of the Preferences window, click
General.
v If the Traverse subdirectories on import check box is selected, all subdirectories

are searched during the import process to locate all MIB files.
v In the File splitter maximum thread count field, specify the number of

computational threads used to detect MIBs during the import process. This can
improve performance when importing a large number of MIBs. The default
value is 5.

v In the MIB parser maximum thread count field, specify the number of
computational threads used to parse MIB files during the import process. This
can improve performance when importing a large number of MIBs The default
value is 10.

v To change the highlighter color of any selections made in the MIB Manager

window, click , select a color from the color palette, and then click OK.

Setting logging preferences
Use the logging preferences to specify the MIB Manager log file directory, and to
set the default message level.

To set the directory preferences, click Preferences or, from the main menu, click
File > Preferences, and then from the left pane of the Preferences window, click
Logging.
v In the Log directory field, specify where the application log file is written. The

default location is $NCHOME/omnibus/log.
v In the Default Message Level field, specify the application's default message

level. You can also use the Edit menu to change the default message logging
level. The message level is valid from when the application is first started until
when the application is shutdown, unless it is changed using the Edit menu.

Note: Changing the message level in the Default Message Level field does not
change the current message level of the application. It only affects the message
level that was initially set when the application was first started (the default
message level). To avoid generating large log files, set the default message level
to warn.

144 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Setting the logging level
You can change the logging level to provide more detailed log or trace files to help
with debugging MIB Manager. The extra information provided by increasing the
logging levels can help you when debugging specific problems when parsing
MIBs.

To change the logging level, click Edit > Debug from the main window menu bar.
Log files have six message levels that you can cycle through to increase the level of
detail that is captured: none, error, warn, info, debug, and verbose.

The following table provides a brief description of each logging level:

Table 33. A list of logging levels with their associated description

Log level Description

none Specifies a log level in which no debug messages are output.

The performance of the application is improved but no warning or error
messages are displayed during parsing.

error Specifies a log level in which only errors which affect the results are logged.

This includes any error identified by MIB Manager which would result in
incorrect data being displayed in the main window.

warn Specifies a log level in which warning and error messages are logged.

A warning indicates a condition that could result in erroneous data and
therefore must be checked. However, the condition will not cause the data to
be corrupted.

info Specifies a log level in which informational, warning, and critical messages are
logged.

Informational messages contain detail regarding overall task progress. For
example, they provide the complete text for objects as they are being parsed.

debug Specifies a log level in which all messages are logged.
Note: Only run MIB Manager in debug mode when you are attempting to
resolve and error condition. The volume of data produced while parsing only
a moderate number of MIBs will quickly fill your file system.

verbose Specifies a log level in which all information messages are logged.

A verbose message includes the state of variables, arrays, and hashes as they
change value and state.

Setting search preferences
This section describes how to define the MIB Manager preferences that are used to
search for the MIB files.

To set the search preferences, click Preferences or, from the main menu, click
File > Preferences, and then from the left pane of the Preferences window, click
Search.

In the MIB Search Path field, set the search path to where the MIB files are
located. The directories must be separated by a semicolon (;). Any subdirectories
are searched automatically to locate dependant MIB files.

The default path includes the location of the base MIB files and the RFC MIB files
that are packaged with MIB Manager. You can specify any new directories at the

Chapter 7. Netcool MIB Manager 145

end of the default file path. This ensures the base directory is initially searched for
dependencies containing the most commonly used MIBs, and then the rfc
directory is searched for the less commonly used MIBs.
Related tasks:
“Importing MIB data” on page 135
How to import SNMP MIB data into MIB Manager.

MIB Manager command-line options
Fix Pack 1

MIB Manager has a command-line utility that you can use to import MIB data and
export rules files. You can issue commands manually or call them
programmatically.

To start the command-line utility, use the following command:

v UNIX Linux $NCHOME/omnibus/bin/nco_mibmanager_batch [options]

v Windows %NCHOME%\omnibus\bin\nco_mibmanager_batch [options]: The output
from MIB Manager is displayed in a new window.

The following table describes the available command-line options. The
-exportmibs, -exportobjects, and -exportoids options can parse regular
expressions that conform with the Java pattern engine.

Windows Use full directory paths when you specify directories. For example:
nco_mibmanager_batch -importdir "C:\anydir\mibs"

Table 34. MIB Manager command-line options

Command-line option Description

-clean Use this option when you first run the MIB Manager
command-line utility, if you previously used the MIB
Manager graphical utility. If you do not use this option, an
error is displayed.

-exportdir string Use this option to specify the directory to which generated
rules files are exported. Enclose the directory path in
double quotation marks (").

For example:

nco_mibmanager_batch -exportdir "/home/user/
export_cmd" -filetype csv

-exportmibs string Use this option to specify the name of the MIB to be
exported. You can use regular expressions to specify
multiple MIBs.

For example, the following command exports objects from
a MIB named “RMON-MIB”:

nco_mibmanager_batch -exportmibs RMON-MIB -filetype
csv

The following command exports objects from all MIBs
whose names contain “MON”:

nco_mibmanager_batch -exportmibs .*MON.* -filetype
csv

146 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 34. MIB Manager command-line options (continued)

Command-line option Description

-exportnewdirectory Use this option to specify that exported files are written to
a new directory, within the existing export directory. The
new subdirectory is automatically named with a time
stamp. Use this option to ensure that existing rules files
are not overwritten.

For example:

nco_mibmanager_batch -exportdir "/home/user/
export_cmd" -exportnewdirectory -filetype csv

-exportobjects string Use this option to specify the name of the MIB object to be
exported. You can use regular expressions to specify
multiple objects.

For example, the following command exports all objects
named “coldStart”:

nco_mibmanager_batch -exportobjects coldStart
-filetype csv

The following command exports all objects whose names
begin with “cold”:

nco_mibmanager_batch -exportobjects cold.* -filetype
csv

-exportoids string Use this option to specify the OID to be exported. You can
use regular expressions to specify multiple OIDs.

For example, the following command exports all objects
with the OID “1.3.6.1.6.3.1.1.5.1”:

nco_mibmanager_batch -exportoids 1.3.6.1.6.3.1.1.5.1
-filetype csv

The following command exports all objects whose OIDs
begin with “1.3.6.1.6.3.1.1.5”:

nco_mibmanager_batch -exportoids 1.3.6.1.6.3.1.1.5.*
-filetype csv

The following command exports all objects with the OIDs
“1.3.6.1.6.3.1.1.5.1” or “1.3.6.1.6.3.1.1.5.2”:

nco_mibmanager_batch -exportoids
1.3.6.1.6.3.1.1.5.1|1.3.6.1.6.3.1.1.5.2 -filetype csv

-exportscope

ALL|TRAPS|OBJECTS

Use this option to specify which type of MIB objects are
exported. This option takes the following values:

v ALL: All MIB objects are exported.

v TRAPS: Only traps are exported.

v OBJECTS: Only objects are exported.

For example:

nco_mibmanager_batch -exportdir "/home/user/
export_cmd" -exportnewdirectory -filetype csv
-exportscope ALL

Chapter 7. Netcool MIB Manager 147

Table 34. MIB Manager command-line options (continued)

Command-line option Description

-filetype

csv|
csv_trap_objects|
html_with_frames|
html_without_frames|
lookup|ncil|nckl_1_1|
nckl_3_0|standalone|
text|
tivoli_universal_agent

Use this option to specify the file format in which the
generated files are exported. This option is required for
export operations.

The available parameters are as follows:

v csv: All object data is written to CSV files.

v csv_trap_objects: All trap data and associated variable
bindings object data is written to a single CSV file.

v html_with_frames: Creates a web page that is suitable
for publishing.

v html_without_frames: Creates a single file named
oids.html that contains a list of all the objects that were
selected for output.

v lookup: Outputs all specified values in a tabbed list
suitable for inclusion in any rules file.

v ncil: Creates separate include files for each enterprise
and generates a single file for generic traps.

v nckl_1_1: Creates files suitable for use with Netcool
Knowledge Library V1.1.

v nckl_3_0: Creates files suitable for use with Netcool
Knowledge Library V3.x.

v standalone: Creates a single rules file that contains all
the selected traps.

v text: Creates a separate text file for each OID.

v tivoli_universal_agent: Creates .mdl and trapcnfg
files.

-help Use this option to display help information about the
command-line options.

-importdir string Use this option to specify the directory from which MIB
files are imported. Enclose the directory path in double
quotation marks (").

For example:

nco_mibmanager_batch -importdir "/home/user/mibs"

-importdirtraverse Use this option to specify that MIB Manager traverses
subdirectories when it is searching for MIB files to import.

For example:

nco_mibmanager_batch -importdir "/home/user/mibs"
-importdirtraverse

-messagelevel

ERROR|WARN|
INFO|DEBUG|VERBOSE|NONE

Use this option to specify the level of message logging.
This option takes the following values:

v ERROR: Only error messages are logged.

v WARN: Warning and error messages are logged.

v INFO: Information, warning, and critical messages are
logged.

v DEBUG: All messages are logged.

v VERBOSE: Verbose messages include the state of variables,
arrays, and hashes as they change value and state.

v NONE: No messages are logged.

148 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 34. MIB Manager command-line options (continued)

Command-line option Description

-messagelog string Use this option to specify the directory to which the
message log file, mibmanager.log, is written. Enclose the
directory path in double quotation marks (").

The default is $NCHOME/omnibus/log.

-searchpath string Use this option to specify a semicolon delimited list of
directories that MIB Manager can search to resolve MIB
dependencies. Enclose the directory path in double
quotation marks (").

For example:

nco_mibmanager_batch -importdir "/home/user/mibs"
-searchpath "/home/user/mib_dependencies"

The following command searches 3 specific directories for
dependencies:

nco_mibmanager_batch -importdir "/home/user/mibs"
-searchpath "/home/user/mib_dependencies;/home/user/
mib_other;/home/user/mib_test"

About SNMP
This section provides additional information about the Simple Network
Management Protocol (SNMP) architecture, the SNMP management information
base (MIB), and some additional MIB concepts.

In an SNMP architecture, a manager component manages an agent. The agent is
software that runs on a network device or application, responds to information
requests (SETs and GETs), and then generates autonomous notifications called
traps. The manager is software that receives the traps and that provides a
mechanism to SET or GET SNMP objects from the network device.

To receive autonomous traps, the manager runs an application that listens on the
TCP/IP SNMP trap port (port 162). SNMP SETs and GETs use port 161. This
application is typically called a Trapd, or trap daemon. A trap daemon is a process
that runs in the background and handles a service on a computer. The Netcool
Trapd application is called the SNMP Probe (nco_p_mttrapd, where mt is an
abbreviation of multithreaded) and is located in the $OMNIHOME/probes/ directory.
The rules files generated by MIB Manager are designed to be used by the SNMP
Probe.

Security

Basic security in SNMP v1 and v2 is provided by using community strings.
Community strings are plain text passwords that are sent with all requests. There
are separate community strings for read-only access and read-write access. MIB
Manager must know the community string defined on a device before it can
execute any requests (read-only for a GET and read-write for a SET), and SNMP
traps and notifications are sent to MIB Manager with a predefined community
string.

Chapter 7. Netcool MIB Manager 149

All network devices that support SNMP have a mechanism for defining the
community string. The standard default read-only password is public and the
standard default read-write password is private. If no community string has been
set on a device, it will usually be one of these passwords. For security reasons, the
default passwords must be changed as soon as possible.

More information

The following books are useful for gaining a good understanding of the SNMP
framework and MIBs:
v Managing Internetworks with SNMP (Third Edition) by Mark Miller (Wiley, 1999)
v Understanding SNMP MIBs by David Perkins and Evan McGinnis (Prentice Hall,

1996)

For a discussion of ASN.1 and the Basic Encoding Rules (BER) that are used for
encoding SNMP data into Protocol Data Unit (PDU) packets for transmission on
the network, see the following book:

SNMP, SNMPv2, and CMIP: The Practical Guide to Network-Management Standards by
William Stallings (Addison-Wesley, 1993).

MIB concepts and design
All SNMP MIB modules that are defined for use by a specific device comprise the
MIB for that device. The term MIB is often used to describe a single module
definition but this is technically incorrect. In fact, the MIB is the combination of all
of the modules used for managing a specific device, whether the device relates to
hardware or software. Therefore, the more precise name for each module defined
by a vendor, or in an RFC, is SNMP MIB module.

All MIB modules are eventually extensions of the root module. All released MIB
modules, from individual vendors, extend from the enterprises object defined in
RFC1155-SMI. Therefore, all SNMP agents must support RFC1155, and all MIB
modules are extensions of RFC1155.

Structure of Management Information (SMI)

To make the SNMP management information base (MIB) extensible, related items
are arranged into MIB modules that form a structured hierarchy. Each MIB module
is defined inside the following construct:

ModuleName DEFINITIONS ::= BEGIN END

The BEGIN and END tags in the module enable several modules to be defined within
a single text file. MIB compilers should be able to handle any number of modules
defined in a single file, but should not require it.

There are conventions for every defined object within the module. For example, a
module name must begin with an uppercase alphabetic character and contain only
letters, numbers, hyphens (-), or underscores (_). An object name must start with a
lowercase alphabetic character and must only contain letters, numbers, hyphens, or
underscores. Comments in MIB modules are represented by two consecutive
hyphens (--) and any text following this symbol, on any line, can be ignored.

The modular, easily extensible design of MIBs makes them able to support any
new functionality or device by adding an additional module. When a module is

150 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

written as an extension of another module, it will include an IMPORTS section,
located below the DEFINITIONS line. The IMPORTS section defines the objects
required by modules higher in the MIB hierarchy and the modules in which they
in turn are defined.

The following definition is from RFC1157 and indicates several objects which are
imported from RFC1155. This section can be viewed as analogous to the include
statement in a programming language such as C or Perl, or in a Netcool rules file.
Additionally, in order to understand the objects in the current MIB module
(RFC1157-SNMP) you must also be aware of the objects in the previous MIB
module (RFC1155-SMI).
RFC1157-SNMP DEFINITIONS ::= BEGIN IMPORTS ObjectName, ObjectSyntax, NetworkAddress,
IpAddress, TimeTicks FROM RFC1155-SMI;

Typographical errors are easily made when specifying imported MIB names. For
example, RFC1212 might be referenced as a MIB module instead of the correct
name, RFC-1212. If parsing errors are highlighted by MIB Manager, you must
check the IMPORTS section to confirm that the MIB modules are correctly named.
Some MIB modules also contain an EXPORTS section (which also ends with a
semicolon). This section informs the reader that the MIB author expects other MIB
modules to use the same specified objects. For our purposes, this section is
irrelevant and can be ignored.

Defined data types

SNMP MIB modules are defined in a format known as ASN.13 (Abstract Syntax
Notation 1). SNMP, however, only uses a portion of ASN.14. ASN.1 is defined in
ITU-T X.208 and in ISO 8824. The portions of ASN.1 that apply to SNMP are
defined in RFC1155. RFC1155 defines the following valid SNMP data types:
v Primitive types: INTEGER, OCTET STRING, OBJECT IDENTIFIER, NULL
v Constructor types: SEQUENCE, SEQUENCE OF
v Defined types: NetworkAddress, IpAddress, Counter, Gauge, TimeTicks, Opaque

A defined type is the mechanism used to specify a particular format for primitive
or constructor types. MIB authors can define additional types using the
TEXTUAL-CONVENTION construct.

DisplayString is a good example of a defined type. In the SNMPv2-SMI-v1 MIB
module, the v1 version of DisplayString has the following definition:
DisplayString ::= OCTET STRING (0..255)

In the SNMPv2-TC MIB module, the v2 version of DisplayString has the following
definition:
DisplayString ::= TEXTUAL-CONVENTION DISPLAY-HINT "255a" STATUS current DESCRIPTION
"Represents textual information taken from the NVT ASCII character set, as defined
in pages 4, 10-11 of RFC 854. To summarize RFC 854, the NVT ASCII repertoire
specifies: - the use of character codes 0-127 (decimal) - the graphics characters
(32-126) are interpreted as US ASCII - NUL, LF, CR, BEL, BS, HT, VT and FF have the
special meanings specified in RFC 854 - the other 25 codes have no standard
interpretation - the sequence ’CR LF’ means newline - the sequence ’CR NUL’ means
carriage-return - an ’LF’ not preceded by a ’CR’ means moving to the same column on
the next line. - the sequence ’CR x’ for any x other than LF or NUL is illegal.
(Note that this also means that a string may end with either ’CR LF’ or ’CR NUL’,
but not with CR.) Any object defined using this syntax may not exceed 255 characters
in length." SYNTAX OCTET STRING (SIZE (0..255))

Chapter 7. Netcool MIB Manager 151

The example above shows that a DisplayString is an OCTET STRING of 0 to 255
characters in length. Note that each OBJECT DESCRIPTOR that corresponds to an
object type in an internet-standard MIB must be a unique, mnemonic, printable
string.

Defining objects

A common mistake made when writing MIB modules is to create an object name
that is not unique. It is claimed that the RFC1155 statement means that only objects
within a single MIB module must be unique. As previously discussed, the MIB is
the complete set of modules which, when combined, are used to manage a
particular device. Therefore, all objects defined in any MIB module must be
unique, not only in its own module, but also in any other object name in any
imported modules, and any modules that those modules may import. A common
mechanism for ensuring that object names are unique is to pre-pend all module
names with the company's ticker symbol or abbreviated company name.

When objects are defined they are mapped into a numerical hierarchy which
resembles a spanning tree. Each time an object is defined, it is defined as a leaf of
a parent object. The following three root objects are defined in the SNMP MIB tree:
v ccitt (root node zero)
v iso (root node 1)
v joint-iso-ccitt (root node 2)

All other nodes in the MIB tree are children of one of these three root nodes. For
example, RFC1155-SMI defines the following objects:
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 } directory
OBJECT IDENTIFIER ::=
{ internet 1 } mgmt OBJECT IDENTIFIER ::= { internet 2 }

experimental OBJECT IDENTIFIER
::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 } enterprises OBJECT
IDENTIFIER ::= { private 1 }

These definitions indicate the object name, the associated object types, each object's
parent name (or ordered list of parents), and the leaf number of this child to that
parent (or parents). Graphically, these items take on a hierarchical form.

You move through the MIB tree view by expanding and collapsing nodes within
the MIB tree. The top level branches of the MIB tree contain the names of the MIB
modules, and contained within each MIB module branch are the other elements
which comprise the MIB. As additional modules are added to the MIB, additional
objects are added to the MIB tree. Each object can be referred to either by its object
name or by its object identifier (OID). The most accurate method is to refer to its
OID. Its OID is defined as its number, and each of its ancestor's numbers
continuing back to the root node, concatenated together with a period (.)
separating each. The OID for the enterprises object (node or leaf) is 1.3.6.1.4.1.

Many vendors do not ensure that their object names are universally unique,
therefore it is possible for two vendors to have an object sharing the same name.
This makes the use of the object name to identify an object a little ambiguous.

152 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

MIB object types
This topic describes the object types defined in SNMP v1 and v2.

You can locate the object information described in the following sections by
selecting a module in the MIB Modules view and then searching for ifIndex in the
Search field of the OID Tree view. Click on the ifIndex object in the OID Tree
hierarchy to see object information and textual convention information in the
Details view.

OBJECT IDENTIFIER

The OBJECT IDENTIFIER is defined by SNMP v1 and is the main building block of
the MIB tree. Object identifiers are analogous to a chapter heading in a book - they
contain no real data but do give you an idea of what kind of content is relayed by
their descendents.

OBJECT TYPE

The OBJECT-TYPE is defined by SNMP v1 and is used as a container for storing
information about the managed device, or some measured value on the device.

TEXTUAL CONVENTION

The TEXTUAL-CONVENTION (TC) is a definition of a type of object but is not an actual
object. In the MIB Modules view, you can select Textual Conventions from the
View list to see the parsed textual conventions displayed in the MIB tree. Select a
TC name in the MIB tree to display its definition in the Details view.

SNMP v1 TRAP TYPE and SNMP v2 NOTIFICATION TYPE

The SNMP v1 TRAP-TYPE and v2 NOTIFICATION-TYPE are the SNMP
mechanism for generating autonomous events to the SNMP manager. SNMP traps
in v1 are not defined as objects within the MIB tree. A TRAP-TYPE object does not
have a defined parent in the OBJECT IDENTIFIER format. Instead, a trap
definition specifies an enterprise for which a trap is defined. The following is a
typical TRAP-TYPE object:
bgpEstablished TRAP-TYPE ENTERPRISE bgp VARIABLES
{ bgpPeerRemoteAddr, bgpPeerLastError,
bgpPeerState }
DESCRIPTION "The BGP Established event is generated when the BGP FSM
enters the ESTABLISHED state." ::= 1

The ENTERPRISE section defines which object is the parent of the trap. However, it
is possible for a MIB tree object to be defined with bgp as the parent and it is
defined as child number 1. In fact, bgpVersion is defined as { bgp 1} in the
RFC1269-MIB module. Therefore, it is impossible to add a v1 trap to the MIB tree
as a leaf using the ENTERPRISE as the parent.

SNMP v2 changes the definition for TRAP-TYPE to NOTIFICATION-TYPE and
specifies that this new v2 trap be defined like other MIB objects, with a parent and
child number making this only a problem for v1 traps. RFC1155 Section 4.1 defines
that using zero (0) as a child number is invalid, and reserved for future use. SNMP
v2 makes use of that zero by allowing vendors to add their v1 traps to a v2 MIB,
by adding a zero to the enterprise name and then adding the trap number after the
zero. Therefore, under v2 it is appropriate to define an object identifier with a zero
as a child of the enterprise and then add the v1 traps as children of that zero.

Chapter 7. Netcool MIB Manager 153

This convention has caused another common mistake made by MIB authors.
Section 4 of RFC1155 states the following:

“An object type definition consists of five fields: OBJECT: ------- A textual name,
termed the OBJECT DESCRIPTOR, for the object type, along with its
corresponding OBJECT IDENTIFIER. Syntax: The abstract syntax for the object
type. This must resolve to an instance of the ASN.1 type ObjectSyntax (defined
below). Definition: A textual description of the semantics of the object type.
Implementations should ensure that their instance of the object fulfills this
definition since this MIB is intended for use in multi-vendor environments. As
such it is vital that objects have consistent meaning across all machines. Access:
One of read-only, read-write, write-only, or not-accessible. Status: One of
mandatory, optional, or obsolete. Future memos may also specify other fields for
the objects which they define.”

According to this rule, all objects must have both an object name and an object
number. Some vendor's MIB modules, and even some RFCs, defined a
NOTIFICATION-TYPE with a parent of zero but without an object name for that
zero. In the following example, the object definition is not actually syntactically
correct as there is no object name defined for child number zero of the
adslAtucTraps object. MIB Manager recognizes the preference of some MIB authors
to use such methods as a shortcut, and allow the object to be added without an
object name. Additionally, to facilitate adding v1 traps to the MIB tree, MIB
Manager automatically adds an object zero as a child of the v1 enterprise object
(note that a v1 MIB cannot use a zero in its OID), assign that object zero as Traps
where is the enterprise name and add the trap below this new object in the MIB
tree. For example, using bgp would result in the following traps ancestors: { bgp
bgpTraps(0) 1 }).

adslAtucPerfLofsThreshTrap NOTIFICATION-TYPE OBJECTS { adslAtucPerfCurr15MinLofs,
adslAtucThresh15MinLofs } STATUS current DESCRIPTION "Loss of Framing 15-minute
interval threshold reached." ::= { adslAtucTraps 0 1 }

Varbinds

Objects that are transmitted with the v1 trap or v2 notification are known as
varbinds. Varbinds contain additional information about the reported event. In a
v1 trap, the varbinds are itemized in the VARIABLES section and in a v2
notification the varbinds are listed in the OBJECTS section. They have the same use
in all versions of SNMP. The order in which the varbinds appear in the list is
important because the PDU (SNMP Packet) encodes the associated values in the
same order in which they are listed in the MIB.

For example, in the OBJECTS section the following three varbinds have been
specified: ifIndex, ifAdminStatus, and ifOperStatus. Therefore, ifIndex is the first
varbind to be encoded, ifAdminStatus is the second, and ifOperStatus is encoded
third. Checking the IF-MIB we find that the ifIndex object type is defined as
InterfaceIndex. Since this is not a valid primitive ASN.1 type for SNMP, it must
be a textual convention. Searching through the textual conventions, we find that
InterfaceIndex actually resolves to an Integer32 (32 bit integer). Therefore, when
the PDU arrives at MIB Manager, the first varbind will be an integer. To determine
what that integer means, MIB Manager must reference the IF-MIB module, look up
ifIndex, and read the associated object information. Checking the second varbind,
we find an enumerated integer type:
SYNTAX INTEGER { up(1), -- ready to pass packets down(2),
testing(3) -- in some test mode }

154 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

When the varbind is decoded from the SNMP packet, its value will be an integer,
the value of which must be interpreted based on the items in this enumerated list.
When MIB Manager is used to create a rules file, it will create a lookup table to
automatically link the enumerated integer with its textual representation. The third
varbind is also an enumerated type with the same values. Therefore, if the
ifAdminStatus is 1 (up) and the ifOperStatus is 2 (down), we know why the event
was generated and can proceed to attempt to determine the cause of this outage.

Varbinds are presented to the user in a rulesfile as $1, $2, $3, and so on, with each
number representing a varbind number. MIB Manager creates elements based on
the varbind elements and uses these to set variables in the details table. For
example, the elements used in the details table might be $ifIndex = $1, which will
be an integer, $ifAdminStatus = $2, which will be something like up (1), and
$ifOperStatus = $3, which will be something like down (3). Any changes made to
the object settings are automatically set in the rules file, using the conventions set
by the Netcool Knowledge Library (NCKL).

Tables

Tables represent the equivalent of a multidimensional array with rows and
columns of data. The table object is defined as a SEQUENCE OF an Entry object.
The Entry object is then defined as a SEQUENCE of OBJECT-TYPE objects.
Occasionally, a vendor designs an unusual system, for example the Cisco 10k
router. This device maintains an internal table of alarm conditions and generates a
trap or notification when the table changes. You must then issue an SNMP GET
request on the contents of the table to determine the current status of the active
alarms on the device. This makes obtaining the alarms by the SNMP manager a bit
more difficult, but not impossible if the administrator has the tools to comply.

OCTET STRING

An octet is a data construct consisting of eight bits (commonly known as a byte).
An OCTET STRING then, is an array of bytes (or a string of bytes). The term
OCTET STRING does not imply that all of the bytes in the string are
alphanumeric. They can also be binary characters and are used as bitmasks.

Valid MIB object formats
This topic describes the formats of valid MIB objects.

The following sections describe the valid SNMP MIB object formats.

TEXTUAL-CONVENTION

A v2 TEXTUAL-CONVENTION (TC) has the following syntax, where the object
name is followed by the ::= entry and then TEXTUAL-CONVENTION. Several sections
follow and are appended with the SYNTAX definition.
DisplayString ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION "Represents textual information taken from the NVT SCII character set,
as defined in pages 4, 10-11 of RFC 854. To summarize RFC 854,
the NVT ASCII repertoire specifies: - the use of character codes 0-127 (decimal) -
the graphics characters (32-126) are interpreted as US ASCII - NUL, LF, CR,BEL, BS,
HT, VT and FF have the special meanings specified in RFC 854 -
the other 25 codes have no standard interpretation -
the sequence ’CR LF’ means newline - the sequence ’CR NUL’ means carriage-return -
an ’LF’ not preceded by a ’CR’ means moving to the same column on the next line. -

Chapter 7. Netcool MIB Manager 155

the sequence ’CR x’ for any x other than LF or NUL is illegal.
(Note that this also means that a string may end with either ’CR LF’ or ’CR NUL’,
but notwith CR.)
Any object defined using this syntax may not exceed 255 characters in length."
SYNTAX OCTET STRING (SIZE (0..255))

A v1 TC consists of the object name followed by the ::= entry, and is then
appended with a valid SYNTAX definition. For example:
DisplayString ::= OCTET STRING

Both these objects exist outside the MIB tree and therefore are not objects in the
MIB. They represent a format for which a syntax can be defined. They have no
OID. You can view them in the MIB Modules view, in a separate filter, by clicking
the View drop-down list, and selecting Textual-Conventions.

TRAP-TYPE objects

The TRAP-TYPE object is valid for v1 MIBs. These objects were not originally
defined to fit cleanly into the MIB tree. They do not have an OID but instead have
an enterprise ID and a trap number, for example:
newRoot TRAP-TYPE
ENTERPRISE dot1dBridge
DESCRIPTION "The newRoot trap indicates that the sending agent has become the new
root
of the Spanning Tree; the trap is sent by a bridge soon after its election as
the new
root, e.g., upon expiration of the Topology Change Timer immediately subsequent
to its
election."
::= 1

A v1 trap begins with an object name followed by the keyword TRAP-TYPE. This is
followed by a number of sections and ends with the ::= entry and a number.
Curly brackets ({}) are never used before, or after, a number.

MACRO objects

A MACRO object defines the format of other MIB objects. MACRO definitions
always begin with the object type, followed by the MACRO keyword, and then the
::= entry. The remainder of the macro definition is enclosed in BEGIN and END tags,
for example:
OBJECT-TYPE MACRO ::=
BEGIN
TYPE NOTATION ::= "SYNTAX"
type (TYPE ObjectSyntax) "ACCESS" Access "STATUS" Status VALUE NOTATION ::= value
(VALUE ObjectName) Access ::= "read-only" | "read-write" | "write-only" |
"not-accessible"
Status ::= "mandatory" | "optional" | "obsolete"
END

Other objects

All other objects must adhere to the following format:
snmpInPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION
"The total number of Messages delivered to the SNMP entity from the transport
service." ::= { snmp 1 }

These objects begin with an object name, which must begin with a lowercase
alphabetic character. This is followed by a keyword that indicates the object type.

156 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Any additional sections follow the keyword, and the ::= entry, and a list of
ancestors in curly brackets ({}) completes the format. The ancestors inside the curly
brackets ({}) can have one of two formats. In the first (shown above) the format is
an object name followed by a number. The object name is the name of this object’s
immediate parent and the number is the leaf number of this object to the parent.

The second valid format for an ancestor list is a list of all ancestors back to a
known object, for example:
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }

In this example, the list starts at a known object (iso being the root of the tree) and
continues to define object names and leaf numbers for each successive generation,
org(3) and dod(6), until the final single integer (1) which indicates the object
number. Note that spaces between the object names and the object numbers are not
allowed.

Chapter 7. Netcool MIB Manager 157

158 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 8. About gateways

Tivoli Netcool/OMNIbus gateways enable you to exchange alerts between
ObjectServers and complementary third-party applications, such as databases and
helpdesk or Customer Relationship Management (CRM) systems.

You can use gateways to replicate alerts or to maintain a backup ObjectServer.
Application gateways enable you to integrate different business functions. For
example, you can configure a gateway to send alert information to a helpdesk
system. You can also use a gateway to archive alerts to a database.

The following figure shows an example gateway architecture.

The preceding figure illustrates how to use gateways for a variety of purposes:

�1� Probes send alerts to the local ObjectServer.

�2� The ObjectServer Gateway replicates alerts between ObjectServers in a
failover configuration.

�3� The Helpdesk gateway integrates the Network Operations Center (NOC)
and the helpdesk by converting trouble tickets to alerts, and alerts to
trouble tickets.

�4� The RDBMS gateway stores critical alerts in a relational database
management system (RDBMS) so that you can analyze network
performance.

RDBMS

Helpdesk/
CRM

Gateway

Gateway

ObjectServer
DENCO

Gateway

ObjectServer
NCOMS

Probe

Probe

Probe

Monitor

Event List

4

33

2

1

Figure 5. Gateways in the Tivoli Netcool/OMNIbus architecture

© Copyright IBM Corp. 1994, 2013 159

After a gateway is correctly installed and configured, the transfer of alerts is
transparent to operators. For example, alerts are forwarded from an ObjectServer to
a database automatically without user intervention.

Note: The information in this publication is generic to all gateways. For
gateway-specific information, see the individual gateway publications in the IBM
Tivoli Network Management Information Center at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
Related concepts:
“Types of gateways”
There are two main types of gateways: unidirectional gateways and bidirectional
gateways.

Types of gateways
There are two main types of gateways: unidirectional gateways and bidirectional
gateways.

Unidirectional gateways allow alerts to flow in only one direction. Changes made in
the source ObjectServer are replicated in the destination ObjectServer or
application, but changes made in the destination ObjectServer or application are
not replicated in the source ObjectServer. Unidirectional gateways can be
considered as archiving tools.

Bidirectional gateways allow alerts to flow from the source ObjectServer to the
target ObjectServer or application, and also allow feedback to the source
ObjectServer. In a bidirectional gateway configuration, changes made to the
contents of a source ObjectServer are replicated in a destination ObjectServer or
application, and the destination ObjectServer or application replicates its alerts in
the source ObjectServer. Bidirectional gateways can be considered as synchronization
tools.

Gateways can send alerts to a variety of targets:
v Another ObjectServer
v A database
v A helpdesk application
v Other applications or devices

ObjectServer gateways are used to exchange alerts between ObjectServers. This is
useful when you want to create a distributed installation, or when you want to
install a backup ObjectServer.

Database gateways are used to store alerts from an ObjectServer. This is useful
when you want to keep a historical record of the alerts forwarded to the
ObjectServer.

Helpdesk gateways are used to integrate Tivoli Netcool/OMNIbus with a range of
helpdesk systems. This is useful when you want to correlate the trouble tickets
raised by your customers with the networks and systems you are using to provide
their services.

Other gateways are specialized applications that forward ObjectServer alerts to
other applications or devices (for example, a flat file or socket).

160 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

Note: Only gateways that send alerts to certain targets can be bidirectional.
Related concepts:
Chapter 8, “About gateways,” on page 159
Tivoli Netcool/OMNIbus gateways enable you to exchange alerts between
ObjectServers and complementary third-party applications, such as databases and
helpdesk or Customer Relationship Management (CRM) systems.

Unidirectional ObjectServer gateways
A unidirectional ObjectServer gateway allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made in the source
ObjectServer are replicated in the destination ObjectServer, but changes made in
the destination ObjectServer are not replicated in the source ObjectServer.

For more information about unidirectional ObjectServer Gateways, see the IBM
Tivoli Netcool/OMNIbus ObjectServer Gateway Reference Guide.
Related concepts:
“Bidirectional ObjectServer gateways”
A bidirectional ObjectServer gateway allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made to the contents of a
source ObjectServer are replicated in a destination ObjectServer, and the
destination ObjectServer replicates its alerts in the source ObjectServer. This enables
you, for example, to maintain a system with two ObjectServers configured as a
failover pair.

Bidirectional ObjectServer gateways
A bidirectional ObjectServer gateway allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made to the contents of a
source ObjectServer are replicated in a destination ObjectServer, and the
destination ObjectServer replicates its alerts in the source ObjectServer. This enables
you, for example, to maintain a system with two ObjectServers configured as a
failover pair.

For more information about bidirectional ObjectServer Gateways, see the IBM Tivoli
Netcool/OMNIbus ObjectServer Gateway Reference Guide.
Related concepts:
“Unidirectional ObjectServer gateways”
A unidirectional ObjectServer gateway allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made in the source
ObjectServer are replicated in the destination ObjectServer, but changes made in
the destination ObjectServer are not replicated in the source ObjectServer.

Database, helpdesk, and other gateways
Most database, helpdesk, and other gateways use a standard architecture, but each
gateway has its own binary file, with additional modules to handle the
communication with the target applications, devices, or files.

For information about specific gateways and their architectures, see the individual
gateway publications.

Chapter 8. About gateways 161

Gateway components
Gateways have reader and writer components. Readers extract alerts from the
ObjectServer. Writers forward alerts to another ObjectServer or to other
applications.

There is only one type of reader, but there are various types of writers depending
on the destination application.

Routes specify the destination to which a reader forwards alerts. One reader can
have multiple routes to different writers, and one writer can have multiple routes
from different readers.

Gateway filters and mappings configure alert flow. Filters define the types of alerts
that can be passed through a gateway. Mappings define the format of these alerts.

Readers, writers, routes, filters, and mappings are defined in the gateway
configuration file.

Unidirectional gateways
A unidirectional database, helpdesk, or other gateway allows alerts to flow from a
source ObjectServer to a destination application. Changes made in the source
ObjectServer are replicated in the destination application, but changes made in the
destination application are not replicated in the source ObjectServer.

A simple example of a unidirectional gateway is the Flat File Gateway, which reads
alerts from an ObjectServer and writes them to a flat file. This example architecture
is shown in the following figure.

Bidirectional gateways
In a bidirectional database, helpdesk, or other gateway configuration, changes
made to the alerts in a source ObjectServer are replicated in a destination
application, and the destination application replicates changes to its alerts in the
source ObjectServer.

This enables you, for example, to raise trouble tickets in a helpdesk system for
certain alerts. Changes made to the tickets in the helpdesk system can then be sent
back to the ObjectServer.

Bidirectional gateways have a similar configuration to unidirectional gateways,
with an additional COUNTERPART attribute for the writers. The COUNTERPART attribute
defines a link between a gateway writer and reader.

The following figure shows an example bidirectional gateway configuration.

The Gateway
nco_g_file

Flat
File

Route

WriterReader

ObjectServer
NCOMS

Figure 6. Example Flat File Gateway architecture

162 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Reader component
A reader extracts alerts from an ObjectServer. There is only one type of reader: the
ObjectServer reader.

When the reader starts, the gateway attempts to open a connection to the source
ObjectServer. If the gateway succeeds in opening the connection, it immediately
starts to read alerts from the ObjectServer.

Writer modules
Writer modules manage communications between gateways and third-party
applications, and format the alert correctly for entry into the application.

The writer module generates log files that can help debug the gateway.

Communication between the writer module and the third-party application uses
helper applications, which interact directly with the application through its APIs or
other interfaces. These processes are transparent to the user (though they are
visible using the ps command or similar utility).

The writer module uses a reference number cache to track the alerts and their
associated reference number in the target application. For each alert, the cache
stores the following:
v The serial number of the alert
v A reference number from the target application, such as a helpdesk ticket

number

When a ticket is raised in response to an alert, the writer module enters the
reference number in the cache and returns it to the ObjectServer where the alert is
updated to include the reference number.

The following figure shows a simplified example of the writer module architecture.

The Gateway
nco_g_clarify

Clarify

Reader

Writer
Module

Route

Reader

ObjectServer
NCOMS

Figure 7. Bidirectional Clarify Gateway

Chapter 8. About gateways 163

Routes
Routes create the link between the source reader and the destination writer.

Any alerts received by the source ObjectServer are read by the reader, passed
through the route to the writer, and written into the destination ObjectServer or
application.

Alert updates from the helpdesk
When a helpdesk operator makes additional changes to a ticket, these are
forwarded to the gateway which runs the corresponding action .sql file to update
the alert in the ObjectServer.

Typically the following action .sql files are provided:
v open.sql

v update.sql

v journal.sql

v close.sql

For detailed information on configuring alert updates from the helpdesk, see the
individual gateway publications.

Store-and-forward mode for gateways
If there is a problem with the gateway target, the ObjectServer and database
writers can continue to run using store-and-forward mode.

When the writer detects that the target ObjectServer or database is not present or is
not functioning (usually because the writer is unable to write an alert), it switches
into store mode. In this mode, the writer stores everything it would normally send
to the database in a file named:

$OMNIHOME/var/writername.destserver.store

In this file name, writername is the name of the writer and destserver is the name of
the server to which the gateway is attempting to send alerts.

The Gateway
nco_g_clarify

Clarify

R

W

ReaderWriter
Module

Reference
Number
Cache

WriterReader

ObjectServer
NCOMS

Figure 8. Reader/writer module architecture

164 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

When the gateway detects that the destination server is back on line, it switches
into forward mode and sends the alert information held in the .store file to the
destination server. After all of the alerts in the .store file have been forwarded, the
writer returns to normal operation.

Store-and-forward mode only works when a connection to the ObjectServer or
database destination has been established, used, and then lost. If the destination
server is not running when the gateway starts, store-and-forward mode is not
triggered and the gateway terminates.

If the gateway connects to the destination ObjectServer and a store-and-forward
file already exists, the gateway replays the contents of the store-and-forward file
before it sends new alerts.

Store-and-forward mode is configured using the attributes STORE_AND_FORWARD and
STORE_FILE.

Note: See the individual gateway publications to determine whether an individual
gateway supports store-and-forward mode. Store and forward does not work with
bidirectional gateway configurations, with the exception of the bidirectional
ObjectServer Gateway.

Secure mode for gateways
When you start the ObjectServer in secure mode, by using the -secure
command-line option, it authenticates probe, gateway, and proxy server
connections by requiring a user name and password.

When a connection request is sent, the ObjectServer issues an authentication
message. The probe, gateway, or proxy server must respond with the correct user
name and password. If the user name and password combination is incorrect, the
ObjectServer issues an error message and rejects the connection.

If the ObjectServer is not running in secure mode, probe, gateway, and proxy
server connection requests are not authenticated.

Secure authentication is configured differently for gateways that use single
configuration files (.conf files) and for gateways that use properties files (.props
files). See the individual gateway reference guides for gateway-specific
configuration information.

You can use the nco_g_crypt utility to encrypt passwords for use in configuration
and properties files. If you are running Tivoli Netcool/OMNIbus in FIPS 140-2
mode, use the nco_aes_crypt utility to encrypt passwords. Encrypted passwords
are decoded by the gateway before they are used to log in to the target system. See
the individual gateway reference guides for gateway-specific information about
encrypting passwords.

For more information about running the ObjectServer and ObjectServer Gateway in
secure mode and FIPS 140–2 mode, see the IBM Tivoli Netcool/OMNIbus Installation
and Deployment Guide and the IBM Tivoli Netcool/OMNIbus ObjectServer Gateway
Reference Guide.

Chapter 8. About gateways 165

Gateway writers and failback
Failover occurs when a gateway loses its connection to the primary ObjectServer
and connects to a backup ObjectServer. Failback functionality allows the gateway
to reconnect to the primary ObjectServer when it becomes active again.

The ObjectServer reader can fail over and fail back between source ObjectServers
without shutting down. This ability is not supported by all gateway writers.

If a writer does not support this mode of failback and failover, the writer, on
detection of the reader failover or failback, will shut down the gateway and rely on
the process agent to restart the gateway.

The following writers support reader failover and failback without shutting:
v ObjectServer writer
v Sybase database writer
v Sybase Reporter writer
v SNMP writer
v Socket writer
v Flat file writer
v Informix® database writer
v Message Bus (XML) writer
v JDBC writer
v Tivoli EIF writer
v TSRM writer
v JDBC database writer

The following writers support failover and failback with shutdown:
v Remedy ARS writer
v Siebel eCommunications writer
v Oracle database writer
v Oracle Reporter writer
v Peregrine writer
v Clarify writer
v HP Service Desk writer
v ODBC database writer
v JDBC database writer

Because bidirectional ObjectServer gateways are used to resynchronize failover
pairs, failback is automatically disabled. This is because one half of the gateway
can legitimately be connected to a backup server and so should not be forced to
keep failing back to the primary ObjectServer. However, if a bidirectional gateway
is being used to share data between two separate sites, and each site has a failover
pair operating, you can manually enable failback on each server. When enabled,
the writer automatically enables failback on its counterpart reader.

166 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 9. Configuring gateways

Configuration files define the environment in which gateways operate and how
they map data between ObjectServer tables and target databases or applications.
Most gateways use multiple configuration files. Some gateways are configured
using a single configuration file.

Most gateways, including ObjectServer gateways, are configured using a properties
file, a map definition file, a startup command file, and a table replication definition
file.gateway_name.props), in conjunction with a map definition file
(gateway_name.map), a startup command file (gateway_name.startup.cmd), and a
table replication definition file (gateway_name.tblrep.def).

The following gateways are configured using a single configuration file with a
.conf extension:
v Gateway for HP ServiceCenter
v Gateway for Remedy ARS
v Gateway for Siebel

Using multiple configuration files
Most gateways are configured using a properties file, a map definition file, a
startup command file, and a table replication definition file.

Before running a gateway, you must edit the various configuration files to suit
your Tivoli Netcool/OMNIbus environment.

The properties file is a text file that contains a set of properties and their
corresponding values. These properties define the operational environment of the
gateway, such as connection details and the location of the other configuration
files.

On startup, the gateway looks for the default properties file $OMNIHOME/etc/
NCO_GATE.props. See the individual gateway reference documentation for
gateway-specific information about configuring the properties file.

The map definition file and table replication definition file define how the gateway
transfers data between ObjectServers and target databases or applications. The
startup command file allows you to configure data operations to occur
automatically when the gateway starts.
Related reference:
“Common gateway properties and command-line options” on page 175
Gateways have a number of common properties and associated command-line
options. Properties define settings for generic functions, such as message logging,
for inter-process communication (IPC), and for common gateway settings, such as
specifying map definition files. You can override the default property values by
editing the properties file or by using the command-line options when you start
the gateway.

© Copyright IBM Corp. 1994, 2013 167

Map definition file
The map definition file defines how the gateway maps alert fields (columns) in an
ObjectServer table to fields in a target database or application. The map definition
file is referenced by the table replication definition file, by the startup command
file, and by the SQL interactive interface.

The default map definition file is $OMNIHOME/gates/gateway_name/
gateway_name.map.

For example, the default Gateway for JDBC map definition file is
$OMNIHOME/gates/jdbc/jdbc.map.

The name and location of the file is specified in the gateway properties file by the
Gate.MapFile property.

The map definition file can contain one or more CREATE MAPPING commands that
use the following syntax. Each field mapping is separated by a comma (,).
CREATE MAPPING map_name
(
’destination_field’ = {’@source_field’|simple_expression|attribute}
[ON INSERT ONLY]
[CONVERT TO {INTEGER|STRING|DATE}]
[NOT NULL ’@source_field’],
...
);

The CREATE MAPPING command is structured as follows:
v map_name is the name of the map definition.
v destination_field is the name of the destination field in the target database or

application.
v source_field is the name of an alert field (column) in the ObjectServer table.
v simple_expression is a string, an integer, a Boolean data type, or a sequence of

strings or integers joined by one or more of the following operators: +, -, *, /.
All operators concatenate strings. All operators work from left to right when
operating on integers.

v attribute is a mapping attribute.

The following table lists the optional CREATE MAPPING command clauses.

Table 35. CREATE MAPPING command clauses

Clause Description

ON INSERT ONLY This clause controls how the field is updated during
the lifetime of an alert.

If you omit this clause, the field is updated whenever
the state of an alert changes.

If you include this clause, the field is created only once
for an alert and is never updated.

CONVERT TO
{INTEGER|STRING|DATE}

This clause defines a forced conversion if the data in a
source field does not match the data type of the
destination field.

The available parameters are INTEGER, STRING, or DATE.

168 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 35. CREATE MAPPING command clauses (continued)

Clause Description

NOT NULL ’@source_field’ This clause provides an alterative source_field value to
be used when the original source value is zero or is an
empty string. The alterative value can be a field
(column) or a constant but it cannot be an expression.

Conversion functions

You can use conversions functions in your map definition, to convert source data
types to string, integer, or datetime data types.

The conversion functions use the following syntax:
v TO_STRING(’@source_field’)

v TO_INTEGER(’@source_field’)

v TO_TIME(’@source_field’)

Map attributes

You can use mapping attribute names to include additional data in mapping
definitions. You can specify two types of attribute: cache value access attributes or
dynamic attributes.

The gateway uses cache value attributes to access values that are stored in the
cross-reference cache. The following table describes the cache value attributes that
can be used in map definitions.

Table 36. Cache value access attributes

Attribute name Description

STATUS.SERIAL Cached serial number for the status table row that is
associated with the current journal or details table
row.

STATUS.SERVER_SERIAL Cached server serial number for the status table row
that is associated with the current journal or details
table row.

STATUS.SERVER_NAME Cached server name for the status table row that is
associated with the current journal or details table
row.

STATUS.IDENTIFIER Cached identifier for the status table row that is
associated with the current journal or details table
row.

JOURNAL.SERIAL Cached serial number of the journal table row.

DETAILS.IDENTIFIER Cached identifier of the details table row.

Dynamic attributes enable the gateway to access dynamic values that are
automatically generated by the gateway. The following table describes the dynamic
attributes that can be used in map definitions.

Chapter 9. Configuring gateways 169

Table 37. Dynamic attributes

Attribute name Description

ACTION_CODE This attribute displays a single character string that
specifies the type of operation performed. Valid
values are:

v I: Insert

v U: Update

v D: Delete

ACTION_TIME This attribute displays the time in UTC at which the
action occurred.

DELETEDAT This attribute displays the date on which the row
was deleted, if applicable.

Example map file

The following is an abridged example of a map definition file that maps data
between two ObjectServers:
CREATE MAPPING StatusMap
(
’Identifier’ = ’@Identifier’ ON INSERT ONLY’
’Node’ = ’@Node’ ON INSERT ONLY,
’NodeAlias’ = ’@NodeAlias’ ON INSERT ONLY NOT NULL ’@Node’,
’Manager' = ’@Manager’ ON INSERT ONLY,
’Agent’ = ’@Agent’ ON INSERT ONLY,
’AlertGroup’ = ’@AlertGroup’ ON INSERT ONLY,
’AlertKey’ = ’@AlertKey’ ON INSERT ONLY,
’Severity’ = ’@Severity’,
’Summary' = ’@Summary’,
’StateChange’ = ’@StateChange’
);

CREATE MAPPING JournalMap
(
’KeyField’ = TO_STRING(STATUS.SERIAL) + ":" +
TO_STRING(’@UID’) + ":" +
TO_STRING(’@Chrono’)ON INSERT ONLY,
’Serial’ = STATUS.SERIAL,
’Chrono’ = ’@Chrono’,
’UID’ = TO_INTEGER(’@UID’),
’Text1’ = ’@Text1’,
’Text2’ = ’@Text2’
);

CREATE MAPPING DetailsMap
(
’KeyField’ = ’@Identifier’ + ’####’ +
TO_STRING(’@Sequence’) ON INSERT ONLY,
’Identifier’ = ’@Identifier’,
’AttrVal’ = ’@AttrVal’,
’Sequence’ = ’@Sequence’,
’Name’ = ’@Name’,
’Detail’ = ’@Detail’
);

170 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table replication definition file
The table replication definition file defines how data is replicated between an
ObjectServer and a target database or application.

The default table replication definition file is $OMNIHOME/gates/gateway_name/
gateway_name.tblrep.def. The name and location of the file is specified in the
gateway properties file. The name of the property differs between gateways.

For example, the Gateway for JDBC table replication definition file is specified by
the Gate.RdrWtr.TblReplicateDefFile property. The default file is
$OMNIHOME/gates/jdbc/jdbc.rdrwtr.tblrep.def.

The table replication definition file can contain one or more REPLICATE commands
that use the following syntax:
REPLICATE {ALL|INSERTS, UPDATES, DELETES, FT_INSERTS, FT_UPDATES, FT_DELETES}
FROM TABLE ’source_table’
USING MAP ’map_name’
[FILTER WITH ’filter’]
[INTO ’target_table’]
[ORDER BY ’order_string’]
[WITH NORESYNC]
[RESYNC DELETES FILTER ’filter’]
[SET UPDTOINS CHECK TO {ENABLED|DISABLED|FORCED}]
[AFTER IDUC DO ’update_command’]
[CACHE FILTER ’condition’];

Use the optional clauses in the order in which they are listed in the syntax
description. For example, when you use both the FILTER WITH and AFTER IDUC DO
clauses, the FILTER WITH clause must precede the AFTER IDUC DO clause. If you use
the CACHE FILTER clause, it must be the last clause in the REPLICATE command.

The available clauses for the REPLICATE command are described in the following
table.

Table 38. REPLICATE command clauses

Clause Description

ALL Use this clause to specify that all inserts, updates, and
deletes on the source table are replicated to the target
table. You can restrict replication by using one or
more of the INSERTS, UPDATES, DELETES, FT_INSERTS,
FT_UPDATES, and FT_DELETES clauses instead of the ALL
clause.

For example, the following command replicates
inserts and updates but it does not replicate deletes.
By not replicating deletes, you can reduce the load on
memory resources and on the target database.

REPLICATE INSERTS, UPDATES

FROM TABLE ’source_table’ Use this clause to specify the data source, where
source_table is the table to be replicated into the target
database.

USING MAP ’map_name’ Use this clause to specify the mapping to be used,
where map_name is the map definition that defines the
source table.

Chapter 9. Configuring gateways 171

Table 38. REPLICATE command clauses (continued)

Clause Description

FILTER WITH ’filter’ Optional. Use this clause to filter the database rows
that are selected for replication, where filter defines
the filter that the gateway uses.
Tip: To replicate events that are not equal to a
particular value, place an exclamation mark (!) before
the equals sign (=) in the filter clause. For example,
the following filter clause replicates all events whose
severity is not 5:

FILTER WITH ’Severity !=5’

INTO ’target_table’ Optional. Use this clause to specify the table in the
target database to which data is replicated, where
target_table is the name of the target table.

If you omit this clause, the REPLICATE command uses
the name of the source table as the target table value.
Therefore, this option is not required when you are
replicating the main alerts.staus, alerts.details,
and alerts.journal ObjectServer tables. It is intended
to be used when you are replicating other
ObjectServer tables to the target database, but this
type of data transfer is normally done by using the
TRANSFER command.

ORDER BY ’order_string’ Optional. Use this clause to specify the order in which
rows are returned to the gateway from the
ObjectServer, where order_string is a comma-separated
list of column names. For example:

ORDER BY ’Serial DESC, StateChange ACS’

You can use the optional ASC and DESC clauses to
specify that the rows are sorted in ascending (ASC) or
descending (DESC) order. If you do not specify a sort
order, the rows are sorted in ascending order.

WITH NORESYNC Optional. Use this clause to specify the tables that you
do not want to resynchronize.

RESYNC DELETES FILTER ’filter’ Optional. Use this clause to specify which replicated
rows to remove before insertion into the target table,
where filter defines the resynchronization deletion
filter that. Use this filter when the rows in the target
and source tables are not an exact match.

172 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 38. REPLICATE command clauses (continued)

Clause Description

SET UPDTOINS CHECK TO
{ENABLED|DISABLED|FORCED}

Optional. Use this clause to configure the
update-to-insert behavior. It has the following
parameters:

v ENABLED: This parameter is the default setting. The
gateway performs normal update-to-insert
conversions. If an update from the source table
contains a row that does not exist in the target
table, the update is converted to an insert and the
row is written to the target table.

v DISABLED: For each update received from the source
table, the gateway sends an update to the target
table. If the update contains rows that do not exist
in the target table, those rows are dropped.

v FORCED: The gateway converts all updates from the
source table to an insert on the target table. If the
row exists in the target table, the row is
deduplicated. This behavior is identical to how
probes operate.

AFTER IDUC DO ’update_command’ Optional. Use this clause to modify rows in the source
ObjectServer immediately after they have been fetched
by the gateway, where update_command is a
comma-separated list of column assignments. The
update is applied to all rows that are inserted,
updated, or deleted.

CACHE FILTER ’condition’ Optional. Use this clause to filter the cache entries
that are retrieved during a cache refresh, where
condition defines the SQL condition that the gateway
adds to the SELECT statement that it uses to retrieve
the cache entries.

Use this clause to reduce the amount of data that the
gateway retrieves during a unidirectional gateway
cache refresh.

The following is an example of a table replication definition file:
REPLICATE INSERTS, DELETES FROM TABLE ’alerts.status’
USING MAP ’StatusMap’
ORDER BY ’Serial’ ASC
FILTER WITH ’Severity !=5’
SET UPDTOINS CHECK TO FORCED
AFTER IDUC DO ’Location=\’PASSED BY GW\’’
CACHE FILTER ’ServerName IN (\’NCOMBS_P\’,\’NCOMBS_B\’)’;

REPLICATE ALL FROM TABLE ’alerts.journal’
USING MAP ’JournalMap’;

REPLICATE ALL FROM TABLE ’alerts.details’
USING MAP ’DetailsMap’;

Chapter 9. Configuring gateways 173

Startup command file
The startup command file contains a set of commands that the gateway runs
automatically each time it starts. You can use these commands to transfer data
from an ObjectServer table to a target database.

The default startup command file is $OMNIHOME/gates/gateway_name/
gateway_name.startup.cmd. For example, the default Gateway for JDBC startup
command file is $OMNIHOME/gates/jdbc/jdbc.startup.cmd.

The name and location of the file is specified in the gateway properties file by the
Gate.StartupCmdFile property.

The following startup commands are available:
v SET PROPERTY: Use this command to set the value of a property in the gateway

properties file.

Syntax SET PROPERTY ’property_name’ TO value;

Example SET PROPERTY ’Gate.NGtkDebug’ TO FALSE;

v GET PROPERTY: Use this command to return the value of a specified property
from the gateway properties file.

Syntax GET PROPERTY ’property_name’;

Example GET PROPERTY ’Gate.NGtkDebug’;

v SHOW PROPS: Use this command to display the current configuration of the
gateway by listing all properties and their values.

Syntax SHOW PROPS;

Example SHOW PROPS;

v GET CONFIG: Use this command to display the current configuration of the
gateway by listing all properties and their values. GET CONFIG provides the same
function as the SHOW PROPS command.

Syntax GET CONFIG;

Example GET CONFIG;

v SET LOG LEVEL TO: Use this command to set the level of message logging for the
gateway. The available levels are debug, info, warn, error, and fatal. The default
logging level is warn.

Syntax SET LOG LEVEL TO message_level;

Example SET LOG LEVEL TO debug;

v TRANSFER: Use this command to transfer data between an ObjectServer table and
a target database table. You can add several TRANSFER commands to the startup
command file.
You can use a filter condition to transfer a partial table. You can also specify a
map as part of the transfer operation. This map must be defined in the map
definition file (gateway_name.map).

174 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Syntax TRANSFER FROM ’source_table’ TO ’target_table’
[VIA FILTER ’filter’]
[WITH DELETE VIA ’delete_filter’]
[USING TRANSFER_MAP ’map_name’];

Example TRANSFER FROM ’master.names’ TO ’resync.names’ VIA FILTER ’Name !=
\’nobody\’’ DELETE;

In this example, all rows that contain the name nobody are deleted from the
resync.names table and replaced with corresponding rows in the
master.names table. The single quotation marks (’) enclosing nobody must be
escaped with backslashes (\).

v FAILOVER_SYNC: Use this command to synchronize data between primary and
backup ObjectServers. The command specifies which master tables are
transferred during the data transfer operation. You can add several
FAILOVER_SYNC commands to the startup command file.

Syntax FAILOVER_SYNC ADD|REMOVE ’table_name’ TO writer_name ;

Example FAILOVER_SYNC ADD ’master.names’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.groups’TO ObjectServerA;
FAILOVER_SYNC ADD ’master.members’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.permissions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.profiles’TO ObjectServerA;

The following is an example of a startup command file:
GET CONFIG;
SET LOG LEVEL TO debug;
TRANSFER FROM ’master.names’ TO ’resync.names’ VIA FILTER
’Name != \’nobody\’’ DELETE;

Common gateway properties and command-line options
Gateways have a number of common properties and associated command-line
options. Properties define settings for generic functions, such as message logging,
for inter-process communication (IPC), and for common gateway settings, such as
specifying map definition files. You can override the default property values by
editing the properties file or by using the command-line options when you start
the gateway.

The following table lists the available common gateway properties and
command-line options. Not all gateways use all of the properties that are listed
here. See the individual gateway reference documentation for gateway-specific
property information.

Table 39. Common gateway properties and command-line options

Property name Command-line option Description

ConfigCryptoAlg string -configcryptoalg string Use this property to specify
the encryption algorithm that
the gateway uses.

Use this property with the
ConfigKeyFile property and
the nco_aes_crypt utility that
is supplied with
Netcool/OMNIbus.

The default is AES.

Chapter 9. Configuring gateways 175

Table 39. Common gateway properties and command-line options (continued)

Property name Command-line option Description

ConfigKeyFile string -configkeyfile string Use this property to specify
the encryption key that is
used to encrypt data.

Use this property with the
ConfigCryptoAlg property
and the nco_aes_crypt utility
that is supplied with
Netcool/OMNIbus.

The default is "".

Connections integer -connections integer Use this property to specify
the maximum number of
client connections that can be
made to the gateway server.

The default is 30.

Gate.CacheHashTblSize
integer

-cachehtblsize integer Use this property to specify
the number of elements that
the gateway allocates for the
hash table cache.

The default is 5023.

Gate.MapFile string -mapfile string Use this property to specify
the mapping file that the
gateway uses.

The default is
$OMNIHOME/gates/
gateway_name/
gateway_name.map.

Gate.NGtkDebug boolean -ngtkdebug boolean Use this property to enable
the logging of NGTK library
debug messages.

The default is TRUE.

Gate.PAAware integer -paaware integer This property indicates
whether the gateway is
process agent (PA) aware.

This property is maintained
by the PA server and is
included in the properties
file for information only.

The default is 0 (not PA
aware).

Gate.PAAwareName string -paname string This property indicates the
name of the process agent
(PA) controlling the gateway.

This property is maintained
by the PA server and is
included in the properties
file for information only.

The default is "".

176 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 39. Common gateway properties and command-line options (continued)

Property name Command-line option Description

Gate.StartupCmdFile string -startupcmdfile string Use this property to specify
the location of the startup
command file.

The default is
$OMNIHOME/gates/
gateway_name/
gateway_name.startup.cmd.

Gate.Transfer.
FailoverSyncRate integer

-fsyncrate integer Use this property to specify
the rate (in seconds) of
failover synchronization.

The default is 60.

Gate.UnixAdminGrp string -unixadmingrp string Use this property to specify
the administration group to
which the gateway user
account belongs when
standard UNIX
authentication is used.

The default is ncoadmin.

Gate.UsePamAuth boolean -usepamauth boolean Use this property to specify
whether PAM authentication
is used.

To run the gateway in FIPS
140-2 mode, set this property
to TRUE.

The default is FALSE.

Help boolean -help boolean Use this property to specify
that the gateway displays
help information when it
starts and shuts down.

The default is FALSE.

Ipc.Timeout integer -ipctimeout integer Use this property to specify
the time period (in seconds)
that the client waits for the
server to respond.

If this time is exceeded, an
error is logged.

The default is 60.

MaxLogFileSize integer -maxlogfilesize integer Use this property to specify
the maximum size (in bytes)
that the gateway allocates for
the log file.

The default is 1024.

MessageLevel string -messagelevel string Use this property to specify
the reporting level for
gateway log file messages.

The default is warn.

Chapter 9. Configuring gateways 177

Table 39. Common gateway properties and command-line options (continued)

Property name Command-line option Description

MessageLog string -messagelog string Use this property to specify
the location of the gateway
message log file.

The default is
$OMNIHOME/log/NCO_GATE.log.

Name string -name string Use this property to specify
the name of the current
gateway instance. If you
want to run multiple
gateways on one computer,
you must use a different
name for each instance.

The default is NCO_GATE.

Props.CheckNames boolean N/A Use this property to instruct
the gateway to shut down if
any property in the
properties file is set to an
invalid value.

The default is TRUE.

PropsFile string -propsfile string Use this property to specify
the location of the gateway
properties file.

The default is
$OMNIHOME/etc/
NCO_GATE.props.

UniqueLog boolean -uniquelog boolean Use this property to specify
that log file names are made
unique by adding the
Process ID (PID) of the
gateway to the file name.

The default is FALSE.

Version boolean -version boolean Use this property to specify
that the gateway displays
version information when it
starts and shuts down.

The default is FALSE.

Related concepts:
“Using multiple configuration files” on page 167
Most gateways are configured using a properties file, a map definition file, a
startup command file, and a table replication definition file.

178 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Issuing commands to running gateways
You can use the SQL interactive interface to issue commands to a running gateway.

Note: If you are running Tivoli Netcool/OMNIbus in FIPS 140-2 mode, you cannot
use the SQL interactive interface to issue commands to gateways.

You can issue the commands that are supported by the gateway startup command
file, such as SET PROPERTY and TRANSFER.

Use the following command to connect to a gateway:
v On UNIX and Linux: $OMNIHOME/bin/nco_sql -server server_name -user

user_name

v On Windows: %OMNIHOME%\bin\isql -S server_name -U user_name

where server_name is the name of the gateway as configured in the Server Editor
and user_name is a valid user name.

On UNIX and Linux operating systems, the following requirements apply when
you are issuing commands to gateways with the SQL interactive interface:
v If you set the Gate.UsePamAuth property to FALSE, the user that runs the gateway

process must have permission to read the user database. Depending on your
operating system configuration, the user needs permission to read the following
files: etc/passwd, etc/shadow, and etc/group.
You must also set the Gate.UnixAdminGrp property to the UNIX user
administration group to which the gateway user account belongs.

v If you set the Gate.UsePamAuth property is to TRUE, you must configure the
gateway PAM service for the auth and account modules.
The gateway might also need permission to read databases used by the PAM
configuration. For example, if the PAM configuration uses UNIX user
authentication, the gateway user might need read access to the /etc/shadow
directory.

For more information about the SQL interactive interface, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.

Gateway interactive command-line tool

For the Gateway for Oracle and the Gateway for ODBC, you can use the gateway
interactive command-line tool (nco_g_icmd) to issue commands to the gateways
while they are running. For more information, see the Gateway for Oracle and
Gateway for ODBC reference guides.

Using single configuration files
The Gateway for HP ServiceCenter, Gateway for Remedy ARS, and Gateway for
Siebel use a single configuration file to define data mappings and to control the
reader and writer components.

Before running one of these gateways, you must edit the configuration file to
specify the reader, writer, route, mapping, and filter definitions.

The default configuration file is $OMNIHOME/etc/G_gateway_name.conf. For example,
the Gateway for Siebel uses the following configuration file: $OMNIHOME/etc/
G_SIEBEL.conf

Chapter 9. Configuring gateways 179

Related reference:
“Filter commands” on page 194
A number of filter commands are available for gateways.
“Mapping commands” on page 192
A number of mapping commands are available for gateways.
“Reader commands” on page 188
A number of reader commands are available for gateways.
“Route commands” on page 195
A number of route commands are available for gateways.
“Writer commands” on page 189
A number of writer commands are available for gateways.

Reader configuration
A reader extracts alerts from an ObjectServer. Readers are started using the START
READER command, which defines the name of the reader and the name of the
ObjectServer from which to read.

For example, to start a reader for an NCOMS ObjectServer, add the following
command to the configuration file:
START READER NCOMS_READ CONNECT TO NCOMS;

After this command is issued, the reader starts and the gateway attempts to open a
connection to the source ObjectServer. If the gateway succeeds in opening the
connection, it immediately starts to read alerts from the ObjectServer. For the
reader to forward these alerts to their destination, you must define an associated
route and writer.
Related reference:
“Reader commands” on page 188
A number of reader commands are available for gateways.

Writer configuration
Writers send the alerts acquired by a reader to the destination application or
ObjectServer. Writers are created using the START WRITER command, which
defines the name of the writer and the information that allows it to connect to its
destination.

For example, to create the writer for a Flat File Gateway, add the following
command to the configuration file:
START WRITER FILE_WRITER
(TYPE = FILE,

REVISION = 1,
FILE = ’/tmp/omnibus/log/NCOMS_alert.log’,
MAP = FILE_MAP,
INSERT_HEADER = ’INSERT: ’,
UPDATE_HEADER = ’UPDATE: ’,
DELETE_HEADER = ’DELETE: ’,
START_STRING = ’"’,
END_STRING = ’"’,
INSERT_TRAILER = ’\n’,
UPDATE_TRAILER = ’\n’,
DELETE_TRAILER = ’\n’

);

180 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

After the START WRITER command is issued, the gateway attempts to establish
the connection to the alert destination (either an application or another
ObjectServer). The writer sends alerts received from the source ObjectServer until
the STOP WRITER command is issued.
Related reference:
“Writer commands” on page 189
A number of writer commands are available for gateways.

Route configuration
Routes create the link between readers and writers. Routes are created using the
ADD ROUTE command. This command defines the name of the route, the source
reader, and the destination writer.

For example, to create the route between the NCOMS ObjectServer reader and the
writer for a Flat File Gateway, add the following command to the configuration
file:
ADD ROUTE FROM NCOMS_READ TO FILE_WRITER;

After this command is issued, the connection between a reader and writer is
established. Any alerts received by the source ObjectServer are read by the reader,
passed through the route to the writer, and written into the destination
ObjectServer or application.
Related reference:
“Route commands” on page 195
A number of route commands are available for gateways.

Mapping configuration
Mappings define how alerts received from the source ObjectServer should be
written to the destination ObjectServer or application. Each writer has a different
mapping that is defined using the CREATE MAPPING command.

For example, to create the mapping between the ObjectServer reader and the writer
for a Flat File Gateway, add the following command to the configuration file:
CREATE MAPPING FILE_MAP
(
’’= ’@Identifier’,
’’= ’@Serial’,
’’= ’@Node’ ,
’’= ’@Manager’,
’’= ’@FirstOccurrence’ CONVERT TO DATE,
’’= ’@LastOccurrence’ CONVERT TO DATE,
’’= ’@InternalLast’ CONVERT TO DATE,
’’= ’@Tally’,
’’= ’@Class’,
’’= ’@Grade’,
’’= ’@Location’,
’’= ’@ServerName’,
’’= ’@ServerSerial’
);

In this example, the mapping name is FILE_MAP.

Each line between the parentheses defines how the gateway writes alerts into the
file. For the Flat File Gateway, the CREATE MAPPING command defines the fields
from which data is written into each alert in the output file. The alert fields from
the source ObjectServer are represented by the @ symbol.

Chapter 9. Configuring gateways 181

The following example shows INSERT and UPDATE commands using the
FILE_MAP mapping shown in the preceding example:
INSERT: "Downlink6LinkMon4Link",127,"sfo4397","Netcool Probe",12/05/03 15:39:23,
12/05/03 15:39:23,12/05/03 15:30:53,1,3300,0,"","NCOMS",127
UPDATE: "muppetMachineMon2Systems",104,"sfo4397","Netcool Probe",12/05/03 12:29:34,
12/05/03 15:40:06,12/05/03 15:31:36,11,3300,0,"","NCOMS",104
UPDATE: "muppetMachineMon4Systems",93,"sfo4397","Netcool Probe",12/05/03 12:29:11,
12/05/03 15:40:35,12/05/03 15:32:05,12,3300,0,"","NCOMS",93

Other gateways might require a field in the target to be specified for each source
ObjectServer field. For example, in the Gateway for Remedy ARS, source
ObjectServer fields are mapped to Remedy ARS fields, which are identified with
long integer values rather than field names. In the following example, the ARS
field 536870913 maps to the Serial field from the ObjectServer:
536870913 = ’@Serial’ ON INSERT ONLY

The ON INSERT ONLY clause controls when the field is updated. Fields with the
ON INSERT ONLY clause are forwarded only once, when the alert is created for
the first time in the ObjectServer. Fields that do not have the ON INSERT ONLY
clause are updated each time the alert changes.
Related reference:
“Mapping commands” on page 192
A number of mapping commands are available for gateways.

Filter configuration
You might not always want to send all of the alerts that are read by a reader to the
destination application. Filters define which of the alerts read by the ObjectServer
reader should be forwarded to the destination.

For example, you may want to send only alerts that have a severity level of
Critical.

You create filters using the CREATE FILTER command and apply them using the
START READER command. For example, to create a filter that forwards only
critical alerts to the destination application or ObjectServer, add the following
command to the configuration file:
CREATE FILTER CRITONLY AS ’Severity = 5’;

This command creates a filter named CRITONLY, which forwards alerts with a
severity level of Critical (5) only.

To apply the filter to an ObjectServer reader, add the following command to the
configuration file:
START READER NCOMS_READ CONNECT TO NCOMS USING FILTER CRITONLY;

Note: To perform string comparisons with filters, you must escape the quotes in
the CREATE FILTER command with backslashes. For example, to create a filter
that forwards only alerts from a node called fred, the CREATE FILTER command
is:
CREATE FILTER FREDONLY AS ’NODE = \’fred\’’;

Creating multiple filters and multiple readers

If you need more than one filter for the same ObjectServer, you can create multiple
readers for it.

182 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

For example, to create a reader that forwards all critical alerts and another that
forwards everything else, use the following commands:
CREATE FILTER CRITONLY AS ’Severity = 5’;
CREATE FILTER NONCRIT AS ’Severity < 5’;
START READER CRIT_NCOMS CONNECT TO NCOMS USING FILTER CRITONLY;
START READER NONCRIT_NCOMS CONNECT TO NCOMS USING FILTER NONCRIT;

Loading filters created using the Filter Builder

You can load and use filters that are created in the Filter Builder.

For example:
LOAD FILTER FROM ’/usr/filters/myfilt.elf’;

This command loads the file /usr/filters/myfilt.elf as a filter. This filter name
is defined by the Filter Builder Name field.

Note: The Name field must be alphabetical and must not contain spaces.
Related reference:
“Filter commands” on page 194
A number of filter commands are available for gateways.
“START READER” on page 188
Use the START READER command to start a reader named reader_name that
connects to an ObjectServer named server_name.

Common gateway command-line options
Gateways that use a single configuration file have a number of common
command-line options. These gateways do not use properties files.

The common command-line options described here are used by the following
gateways:
v Gateway for HP ServiceCenter
v Gateway for Remedy ARS
v Gateway for Siebel

The following table lists the available common command-line options that you can
use when starting a gateway. See the individual gateway reference documentation
for gateway-specific command-line options.

Table 40. Common gateway command-line options

Command-line
option Description

-admingroup string Specifies the name of the UNIX user group that has administrator
privileges. Members of this group can log into the gateway. The
default group name is ncoadmin.

Chapter 9. Configuring gateways 183

Table 40. Common gateway command-line options (continued)

Command-line
option Description

-authenticate UNIX
| PAM | HPTCB

Specifies the authentication mode to use to verify user credentials.
The options are UNIX, PAM, and HPTCB.

The default authentication mode is UNIX, which means that the
Posix getpwnam or getspnam function is used to verify user
credentials on UNIX operating systems. Depending on system
setup, passwords are verified using the /etc/password file, the
/etc/shadow shadow password file, NIS, or NIS+.

If PAM is specified as the authentication mode, Pluggable
Authentication Modules are used to verify user credentials. The
service name used by the gateway when the PAM interface is
initialized is netcool. PAM authentication is available on Linux,
Solaris, and HP-UX 11 operating systems only.

If HPTCB is specified as the authentication mode, this HP-UX
password protection system is used. This option is only available
on HP trusted (secure) systems.

-config string Specifies the name of the configuration file to be read when the
gateway starts. The default is $OMNIHOME/etc/gatename.conf.

-connections The number of permitted connections. The default is 30.

-debug When specified, debug mode is enabled.

-help Displays help information about the command-line options and
exits.

-ipctimeout IPC Session timeout. The default is 60 seconds.

-logfile string Specifies the name of the log file. If omitted, the default is
$NCHOME/omnibus/log/gateway_name.log.

-logsize integer Specifies the maximum size of the log file in KB. The minimum is
16 KB. The default is 1 MB.

-messagelevel The level of messages to be logged. The available levels are: debug,
info, warn, error, and fatal.

The default is warn.

-messagelog The path to the message log file.

The default is: $NCHOME/omnibus/log/NCO_GATE.log

-name string Specifies the gateway name. Specify this name following the
-server command-line option to connect to the gateway using
nco_sql.

If omitted, the default is GATENAME.

-notruncate Specifies that the log file is not truncated.

-oldtimestamp Specifies the timestamp format to use in the log file.

-propsfile The full path to the gateway properties file.

-queue integer Specifies the size of the internal queues. The default is 1024. Do not
modify unless advised by IBM Software Support.

-stacksize integer Specifies the size of the internal threads. The default is 256 KB. Do
not modify unless advised by IBM Software Support.

184 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 40. Common gateway command-line options (continued)

Command-line
option Description

-uniquelog If -logfile is not set, this option forces the log file to be uniquely
named by appending the process ID of the gateway to the end of
the default log file name.

If -logfile is set, this has no effect.

-version Displays version information and exits.

Configuring running gateways
You can use the SQL interactive interface to change the configuration of a gateway
while it is running.

About this task

Note: To connect to a gateway on UNIX using nco_sql, you must specify the user
name and password of a member of the UNIX user group that is allowed to log
into a gateway. This user group is specified using the -admingroup command-line
option. By default, this is the ncoadmin user group. You might need to ask your
system administrator to create this group. Also, the user running the gateway must
have access to the appropriate file that is used to verify passwords so that the
members of ncoadmin can be authenticated when logging into the gateway using
nco_sql.

Use the SQL interactive interface to connect to a gateway as a specific user, as
shown in the following table.

Table 41. Connecting to the gateway using the SQL interactive interface

On Enter the following command

UNIX $OMNIHOME/bin/nco_sql -server servername -user username

Windows %OMNIHOME%\bin\redist\isql -S servername -U username

In these commands, servername is the name of the gateway and username is a valid
user name. If you do not specify a user name, the default is the user running the
command.

You are prompted to enter a password. On UNIX, the default is to enter your
UNIX password. To authenticate users using other methods, use the -authenticate
command-line option.

After connecting with a user name and password, a numbered prompt is
displayed.
1>

You can enter commands to configure the gateway dynamically. The following
example shows a session in which new routes are added to a gateway with a
single .conf configuration file:
$ nco_sql -server REMEDY
Password:
User ’admin’ logged in.
1> ADD ROUTE FROM DENCO_READ TO ARS_WRITER;

Chapter 9. Configuring gateways 185

2> ADD ROUTE FROM DENCO_READ TO OS_WRITER;
3> go

1>

Note: If you want to disable interactive configuration, add the following line to
the end of the gateway configuration file:
SET CONNECTIONS FALSE;

Loading and saving configurations
You can use the SQL interactive interface to load and save gateway configurations
while the gateway is running.

About this task

You can use the saved configuration file for other gateways.

Procedure
1. To stop any running readers and writers:

>1 STOP;
>2 go

2. To discard the current configuration:
>1 DUMP CONFIG;
>2 go

The DUMP CONFIG command will not work if any readers or writers are running,
or if the configuration has been changed interactively. To determine if the
configuration has been changed interactively, use the SHOW SYSTEM command.
You can use the FORCE option to force the current configuration to be discarded.

3. To load a new configuration:
>1 LOAD CONFIG FROM ’file_name’;
>2 go

where file_name is the path to another configuration file.
4. To save the current configuration:

>1 SAVE CONFIG TO ’file_name’;
>2 go

where file_name is name and path for the new configuration file.

Gateway commands
The following topics describe the commands that you can use with gateways that
use a single configuration file.

The commands described here are used by the following gateways:
v Gateway for HP ServiceCenter
v Gateway for Remedy ARS
v Gateway for Siebel

The gateway commands can be used in the configuration file
(G_gateway_name.conf) or with the SQL interactive interface. The following table
lists the available commands.

186 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 42. Gateway commands

Command
Group Command Description

Reader
commands

START READER Starts a reader.

STOP READER Stops a reader.

SHOW READERS Lists all the current readers.

Writer
commands

START WRITER Starts a writer.

STOP WRITER Stops a writer.

SHOW WRITERS Lists all the current writers.

SHOW WRITER TYPES Lists all the types of writers that are
supported by a gateway.

SHOW WRITER ATTRIBUTES Lists all the attributes of a writer.

Mapping
commands

CREATE MAPPING Creates a mapping file.

DROP MAPPING Removes a mapping file.

SHOW MAPPINGS Lists all the mappings being used by a
gateway.

SHOW MAPPING ATTRIBUTES Lists all the attributes of a mapping.

Filter
commands

CREATE FILTER Creates a filter.

LOAD FILTER Loads a filter.

DROP FILTER Removes a filter.

Route
commands

ADD ROUTE Adds a route between a reader and a
writer.

REMOVE ROUTE Removes a route.

SHOW ROUTES Shows all the routes configured for a
gateway.

Configuration
commands

LOAD CONFIG Loads a configuration file.

SAVE CONFIG Saves a configuration file.

DUMP CONFIG Clears the current configuration.

General
commands

SHUTDOWN Shuts down the gateway.

SET CONNECTIONS Enable or disables connections to the
gateway from the SQL interactive
interface.

SHOW SYSTEM Displays information about the gateway
settings.

SET DEBUG MODE Sets the debugging mode of the gateway.

TRANSFER Transfers the contents of one database
table to another database table.

Chapter 9. Configuring gateways 187

Reader commands
A number of reader commands are available for gateways.
Related concepts:
“Reader configuration” on page 180
A reader extracts alerts from an ObjectServer. Readers are started using the START
READER command, which defines the name of the reader and the name of the
ObjectServer from which to read.

START READER:

Use the START READER command to start a reader named reader_name that
connects to an ObjectServer named server_name.

Syntax
START READER reader_name CONNECT TO server_name [USING FILTER filter_name]
[ORDER BY ’column, ... [ASC | DESC]’] [AFTER IDUC DO ’update_command’]
[IDUC = integer] [JOURNAL_FLUSH = integer] [IDUC_ORDER];

The optional USING FILTER clause, followed by the name of a filter that has been
created using the CREATE FILTER command, enables you to restrict the number of
rows affected by gateway updates. The filter replaces an SQL WHERE clause, so
the gateway only updates the rows selected by the filter.

The optional ORDER BY clause instructs the gateway to display the results in
sequential order, depending on the values of one or more column names, in either
descending (DESC) or ascending (ASC) order. If the ORDER BY clause is not
specified, no ordering is used.

The optional AFTER IDUC clause instructs the gateway to perform the update
specified in the update_command in the ObjectServer when it places alerts in the
writer queue. This is used to provide feedback when alerts pass through a
gateway.

Note: The update command that follows an AFTER IDUC DO statement in the
START READER command must be a simple UPDATE statement. It must not use
conditions (for example, WHERE or HAVING); these are not supported in this
context.

The value specified in the optional IDUC clause indicates an IDUC interval for
gateways that is more frequent than the value of the Granularity property set in
the source ObjectServer. This enables gateway updates to be forwarded to the
target more rapidly without causing overall system performance to deteriorate.

The value specified in the optional JOURNAL_FLUSH clause indicates a delay in
seconds between when the IDUC update occurs in the ObjectServer (every
Granularity seconds) and when the journal entries are retrieved by the gateway.
Normally, only journal entries that have been made in the last Granularity seconds
are retrieved. When the system is under heavy load, set this clause so journal
entries are retrieved for the last integer + Granularity seconds. This prevents the loss
of any journal entries that are created after the IDUC update but before the
gateway retrieves the entries. Any duplicate journal entries retrieved are eliminated
by deduplication.

The optional IDUC_ORDER clause specifies the order in which the IDUC data is
processed. The default processing mode for gateways is to process DELETE
statements, followed by UPDATE statements, followed by INSERT statements. Do

188 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

not change this clause unless you have been advised to do so by IBM Software
Support.

Example

This example uses the Grade field as a state field. Initially, all probes set Grade to
0. The gateway filters any alerts that have a Grade of 1. After the alerts have
passed through the gateway, the AFTER IDUC update provides alert state feedback
by changing the value of the Grade field to 2.
START READER NCOMS_READER CONNECT TO NCOMS USING FILTER CRIT_ONLY
ORDER BY ’SERIAL ASC’ AFTER IDUC DO ’update alerts.status set Grade=2’;

Related concepts:
“Filter configuration” on page 182
You might not always want to send all of the alerts that are read by a reader to the
destination application. Filters define which of the alerts read by the ObjectServer
reader should be forwarded to the destination.

STOP READER:

Use the STOP READER command to stop the reader named reader_name.

Syntax
STOP READER reader_name;

This command does not stop the reader if the reader is in use with any routes.

Example
STOP READER NCOMS_READ;

SHOW READERS:

Use the SHOW READERS command to list all the current readers that have been
started, and which are running on the gateway.

Syntax
SHOW READERS;

This command can only be used interactively.

Example
SHOW READERS;

Writer commands
A number of writer commands are available for gateways.
Related concepts:
“Writer configuration” on page 180
Writers send the alerts acquired by a reader to the destination application or
ObjectServer. Writers are created using the START WRITER command, which
defines the name of the writer and the information that allows it to connect to its
destination.

Chapter 9. Configuring gateways 189

START WRITER:

Use the START WRITER command to start a writer named writer_name.

Syntax
START WRITER writer_name
(TYPE=writer_type , REVISION=number
[, keyword_setting [, keyword_setting] ...]);

The START WRITER command is followed by a list of comma-separated keyword
settings in parentheses. The first setting must be a TYPE setting indicating the
writer_type. The next setting must be a REVISION setting. This is currently set to 1
for all writers. The remaining keywords and their settings depend on the type of
writer.

Example

This example starts the writer for a Socket Writer Gateway.
START WRITER SOCKET_WRITER
(

TYPE = SOCKET,
REVISION = 1,
HOST = ’sfo768’,
PORT = 4010,
MAP = SOCKET_MAP,
INSERT_HEADER = ’INSERT: ’,
UPDATE_HEADER = ’UPDATE: ’,
DELETE_HEADER = ’DELETE: ’,
START_STRING = ’"’,
END_STRING = ’"’,
INSERT_TRAILER = ’\n’,
UPDATE_TRAILER = ’\n’,
DELETE_TRAILER = ’\n’

);

STOP WRITER:

Use the STOP WRITER command to stop the writer called writer_name.

Syntax
STOP WRITER writer_name;

If any route is using this writer, the writer does not stop.

Example
STOP WRITER ARS_WRITER;

SHOW WRITERS:

Use the SHOW WRITERS command to list all the current writers in the gateway.

Syntax
SHOW WRITERS;

This command can only be used interactively.

190 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example
1>SHOW WRITERS;
2>GO
Name Type Routes Msgq Id Mutex Id Thread
----------- ---- ------ ------- -------- ------
SNMP_WRITER SNMP 1 15 0 0x001b8cd0

1>

SHOW WRITER TYPES:

Use the SHOW WRITER TYPES command to list all the currently known types of
writers that are supported by the gateway.

Syntax
SHOW WRITER TYPES;

This command can only be used interactively.

Example
1> SHOW WRITER TYPES;
2> GO
Type Revision Description
------ ----------- -----------------------
ARS 1 Action Request System V3.0
OBJECT_SERVER 1 Netcool/OMNIbus ObjectServer V7
SYBASE 1 Sybase SQL Server 10.0 RDBMS
SNMP 1 SNMP Trap forwarder
SERVICE_VIEW 1 Service View

SHOW WRITER ATTRIBUTES:

Use the SHOW WRITER ATTRIBUTES command to show all the settings (or
attributes) of the writer named writer_name.

Syntax
SHOW WRITER { ATTRIBUTES | ATTR } FOR writer_name;

The ATTRIBUTES keyword is interchangeable with the abbreviated ATTR
keyword.

This command can only be used interactively.

Example
1> SHOW WRITER ATTR FOR SNMP_WRITER;
2> GO
Attribute Value
----------- ---
MAP SNMP_MAP
TYPE SNMP
REVISION 1
GATEWAY penelope

1>

Chapter 9. Configuring gateways 191

Mapping commands
A number of mapping commands are available for gateways.
Related concepts:
“Mapping configuration” on page 181
Mappings define how alerts received from the source ObjectServer should be
written to the destination ObjectServer or application. Each writer has a different
mapping that is defined using the CREATE MAPPING command.

CREATE MAPPING:

Use the CREATE MAPPING command to create a mapping file named
mapping_name, for use by a writer.

Syntax
CREATE MAPPING mapping_name (mapping [, mapping]);

Mapping lines have the following syntax:
{ string | integer } = { string | integer | name | real | boolean }
[ON INSERT ONLY] [CONVERT TO { INT | STRING | DATE }]

The first argument is an identifier for the destination field and the second
argument is an identifier for the source field (or a preset value).

The right side of the mapping is dependent on the writer with which the mapping
is to be used. (For gateway-specific details, see the writer section of the individual
gateway publications.)

The optional ON INSERT ONLY clause determines the update behavior of the
mapping. Without the ON INSERT ONLY clause, the field is updated every time a
change is made to an alert. With the ON INSERT ONLY clause, the field is inserted
at creation time (that is, when the alert appears for the first time) but is not
updated on subsequent updates of the alert even if the field value is changed.

The optional CONVERT TO type clause allows the mapping to define a forced
conversion for situations where a source field may not match the type of the
destination field. The type can be INT, STRING, or DATE. This forces the source
field to be converted to the specified data type.

Example
CREATE MAPPING SYBASE_MAP
(
’Node’=’@Node’ ON INSERT ONLY,
’Summary’=’@Summary’ ON INSERT ONLY,
’Severity’=’@Severity’);

192 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

DROP MAPPING:

Use the DROP MAPPING command to remove the mapping named mapping_name
from the gateway.

Syntax
DROP MAPPING mapping_name;

This command does not drop the map if it is being used by a writer.

Example
DROP MAPPING SYBASE_MAP;

SHOW MAPPINGS:

Use the SHOW MAPPINGS command to list all the mappings that are currently
created in the gateway.

Syntax
SHOW MAPPINGS;

This command can only be used interactively.

Example
1> SHOW MAPPINGS;
2> GO
Name Writers
-------------------------------- -----------
SNMP_MAP 1
1>

SHOW MAPPING ATTRIBUTES:

Use the SHOW MAPPING ATTRIBUTES command to show the mappings (or
attributes) of the mapping named mapping_name.

Syntax
SHOW MAPPING { ATTRIBUTES | ATTR } FOR mapping_name;

The ATTRIBUTES keyword is interchangeable with the abbreviated ATTR
keyword. This command can only be used interactively.

Example
SHOW MAPPING ATTR FOR SYBASE_MAP;

Chapter 9. Configuring gateways 193

Filter commands
A number of filter commands are available for gateways.
Related concepts:
“Filter configuration” on page 182
You might not always want to send all of the alerts that are read by a reader to the
destination application. Filters define which of the alerts read by the ObjectServer
reader should be forwarded to the destination.

CREATE FILTER:

Use the CREATE FILTER command to create a filter named filter_name for use by a
reader.

Syntax
CREATE FILTER filter_name AS filter_condition;

The filter specification filter_condition is an SQL condition.

Example
CREATE FILTER HIGH_TALLY_LOG AS ’Tally > 100’;
CREATE FILTER NCOMS_FILTER AS ’Agent = \’NNM\’’;

LOAD FILTER:

Use the LOAD FILTER command to load a filter from a file.

Syntax
LOAD FILTER FROM ’filename’;

Include the path to the file. Filter files have a .elf file extension.

Example
LOAD FILTER FROM ’/disk/filters/newfilter.elf’;

DROP FILTER:

Use the DROP FILTER command to remove the filter named filter_name from the
gateway.

Syntax
DROP FILTER filter_name;

The filter is not dropped if it is being used by a reader.

Example
DROP FILTER HIGH_TALLY_LOG;

194 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Route commands
A number of route commands are available for gateways.
Related concepts:
“Route configuration” on page 181
Routes create the link between readers and writers. Routes are created using the
ADD ROUTE command. This command defines the name of the route, the source
reader, and the destination writer.

ADD ROUTE:

Use the ADD ROUTE command to add a route between a reader named
reader_name and a writer named writer_name, to allow alerts to pass through the
gateway.

Syntax
ADD ROUTE FROM reader_name TO writer_name;

Example
ADD ROUTE FROM NCOMS_READER TO ARS_WRITER;

REMOVE ROUTE:

Use the REMOVE ROUTE command to remove an existing route between a reader
named reader_name and a writer named writer_name.

Syntax
REMOVE ROUTE FROM reader_name TO writer_name;

Example
REMOVE ROUTE FROM NCOMS_READER TO ARS_WRITER;

SHOW ROUTES:

Use the SHOW ROUTES command to show all currently-configured routes in the
gateway.

Syntax
SHOW ROUTES;

This command can only be used interactively.

Example
1> SHOW ROUTES;
2> GO
Reader Writer
-------------------------------- --------------------------------
NCOMS_READER SNMP_WRITER

1>

Chapter 9. Configuring gateways 195

Configuration commands
A number of configuration commands are available for gateways.

LOAD CONFIG:

Use the LOAD CONFIG command to load a gateway configuration file from a file
named filename.

Syntax
LOAD CONFIG FROM ’filename’;

Example
LOAD CONFIG FROM ’/disk/config/gateconf.conf’;

SAVE CONFIG:

Use the SAVE CONFIG command to save the current configuration of the gateway
into a file named in filename.

Syntax
SAVE CONFIG TO ’filename’;

Example
SAVE CONFIG TO ’/disk/config/newgate.conf’;

DUMP CONFIG:

Use the DUMP CONFIG command to clear the current configuration.

Syntax
DUMP CONFIG [FORCE];

If the gateway is active and forwarding alerts, this command does not clear the
configuration unless the optional keyword FORCE is used.

Example
DUMP CONFIG;

General commands
A number of general commands are available for gateways.

SHUTDOWN:

Use the SHUTDOWN command to instruct the gateway to shut down; all readers
and writers are stopped.

Syntax
SHUTDOWN [FORCE];

By default, the gateway is not shut down if interactive changes to the
configuration have not been saved.

If the optional FORCE keyword is used, the gateway is shut down, even if the
configuration has been changed interactively.

196 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example
SHUTDOWN;

SET CONNECTIONS:

Use the SET CONNECTIONS command to enable or disable connections to the
gateway using the SQL interactive interface.

Syntax
SET CONNECTIONS { TRUE | FALSE | YES | NO };

When set to FALSE or NO, it is not possible to connect to the gateway with nco_sql.
When set to TRUE or YES, it is possible to connect to the gateway with nco_sql. This
command determines whether interactive reconfiguration is allowed.

Example
SET CONNECTIONS TRUE;

SHOW SYSTEM:

Use the SHOW SYSTEM command to display information about the current
gateway settings.

Syntax
SHOW SYSTEM;

The parameters returned are shown in the following table.

Table 43. Show system parameters

System Parameter Description

Version Version number of the gateway.

Server Type Type of server. Set to Gateway.

Connections Status of the SET CONNECTIONS flag.

Debug Mode Status of the SET DEBUG MODE flag.

Multi User Gateway multi-user mode. Set to YES.

Configuration
Changed

If the configuration has been changed interactively, this is set to YES.

More parameters can be returned when in debug mode. This command can only
be used interactively.

Example
1> SHOW SYSTEM;
2> GO
System Parameter Value
---------------- --------------------------------
Version 7.0
Server Type Gateway
Connections ENABLED
Debug Mode NO
Multi User YES

Chapter 9. Configuring gateways 197

SET DEBUG MODE:

Use the SET DEBUG MODE command to set the debugging mode of the gateway.

Syntax
SET DEBUG MODE { TRUE | FALSE | YES | NO };

When set to TRUE or YES, debugging messages are sent to the log file. The default
setting is NO or FALSE. Use this command only under the advice of IBM Software
Support.

Example
SET DEBUG MODE NO;

TRANSFER:

Use the TRANSFER command to transfer the contents of one database table to
another database table.

Syntax
TRANSFER ’tablename’ FROM readername TO writername [AS ’tableformat’]
{ DELETE | DELETE condition | DO NOT DELETE }
[USE TRANSFER_MAP] [USING FILTER filter_clause];

You can use this command to transfer tables between Sybase, Oracle, Informix,
ODBC, CORBA, and Socket Writer gateways.

The AS tableformat clause specifies the format of the destination table if it is
different from the source table format.

The DELETE and DO NOT DELETE clauses define how the destination table is
processed. By default, the contents of the destination table are deleted before the
contents of the source table are transferred. You can optionally specify a condition
that determines whether the deletion occurs. If you specify the DO NOT DELETE
clause, the contents of the destination table are not deleted before the contents of
the source table are transferred.

Note: The DELETE clause does not function with the Socket Writer Gateway and
the CORBA gateways.

The USE TRANSFER_MAP clause instructs the gateway to use the mapping
definition that is assigned as the map to the writer used in the TRANSFER
command. The USE TRANSFER_MAP clause is only available for use with the
Oracle Gateway.

An optional filter clause can be applied by specifying USING FILTER followed by
the filter. Enter a valid filter.

Example
TRANSFER ’alerts.conversions’ FROM NCO_READER TO SYBASE_WRITER AS
’alerts.conversions’ DELETE;
TRANSFER ’alerts.status’ FROM NCOMS_READ TO DENCO_WRITE AS ’ncoms.status’
USING FILTER ’ServerName = \’NCOMS\’’ DELETE USE TRANSFER_MAP;

198 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Creating conversion tables
You can create conversion tables to enable certain data conversions to take place
between fields.

For example, if you are using the Gateway for Remedy ARS, you can create a table
within the ObjectServer to insert values for the Severity field found in Remedy
ARS.

To do this, you must use ObjectServer SQL commands. You can run ObjectServer
SQL commands using the following tools:
v UNIX SQL interactive interface (nco_sql)
v Windows SQL interactive interface (isql)
v Netcool/OMNIbus Administrator

The following example ObjectServer SQL creates the table remedy in an
ObjectServer, and inserts six values and corresponding descriptions for the
Severity field:
create database conversions;
use database conversions;
create table conversions.remedy persistent (
KeyField varchar(255) primary key,
Colname varchar(255),
OSValue varchar(255),
Conversion varchar(255)
);
go

insert into conversions.remedy values (’Severity0’,’Severity’,’0’,’Clear’);
insert into conversions.remedy values (’Severity1’,’Severity’,’1’,’Indeterminate’);
insert into conversions.remedy values (’Severity2’,’Severity’,’2’,’Warning’);
insert into conversions.remedy values (’Severity3’,’Severity’,’3’,’Minor’);
insert into conversions.remedy values (’Severity4’,’Severity’,’4’,’Major’);
insert into conversions.remedy values (’Severity5’,’Severity’,’5’,’Critical’);
go

Chapter 9. Configuring gateways 199

200 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 10. Running gateways

Before you can run a gateway, you must create an entry for it in the Server Editor.
You must also configure the gateway to suit your operational environment.

For information about adding an entry to the Server Editor, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.
Related concepts:
Chapter 9, “Configuring gateways,” on page 167
Configuration files define the environment in which gateways operate and how
they map data between ObjectServer tables and target databases or applications.
Most gateways use multiple configuration files. Some gateways are configured
using a single configuration file.

Use of OMNIHOME and NCHOME environment variables
Tivoli Netcool/OMNIbus V7.0 (and earlier) uses the OMNIHOME environment
variable in many configuration files. To use these files on Tivoli Netcool/OMNIbus
V7.1 (and later), replace occurrences of the OMNIHOME environment variable with
NCHOME/omnibus.

On UNIX and Linux operating systems, replace $OMNIHOME with $NCHOME/omnibus.

On Windows operating systems, replace %OMNIHOME% with %NCHOME%\omnibus.

Running gateways
On UNIX and Linux operating systems, you start gateways from the command
line. On Windows operating systems, you can start gateways from the command
line or as Windows services.

To start a gateway that uses the default configuration files, use the following
command:
v On UNIX and Linux: $OMNIHOME/bin/nco_g_gateway_name
v On Windows: %OMNIHOME%\bin\nco_g_gateway_name

To start a second instance of a gateway, with a different name, use one of the
following commands.
v On UNIX and Linux:

– Use the following command to start a gateway that uses multiple
configuration files:
$OMNIHOME/bin/nco_g_gateway_name -name GATE2 -propsfile
$OMNIHOME/etc/GATE2.props

– Use the following command to start a gateway that uses a single
configuration file:
$OMNIHOME/bin/nco_g_gateway_name -name GATE2 -config
$OMNIHOME/etc/GATE2.conf

v On Windows:
– Use the following command to start a gateway that uses multiple

configuration files:

© Copyright IBM Corp. 1994, 2013 201

%OMNIHOME%\bin\nco_g_gateway_name.exe -name GATE2 -propsfile
%OMNIHOME%\etc\GATE2.props

– Use the following command to start a gateway that uses a single
configuration file:
%OMNIHOME%\bin\nco_g_gateway_name.exe -name GATE2 -config
%OMNIHOME%\etc\GATE2.conf

On UNIX and Linux operating systems, you must run gateways under process
control.

For information about using process control, see the IBM Tivoli Netcool/OMNIbus
Administration Guide.

Running gateways as Windows services

To run the gateway as a Windows service, use the following steps:
1. To run the gateway on the same host as the ObjectServer, use the following

command to register it as a service:
%OMNIHOME%\bin\nco_g_gateway_name.exe -install -depend NCOObjectServer

2. To run the gateway on a different host to the ObjectServer, use the following
command to register it as a service:
%OMNIHOME%\bin\nco_g_gateway_name.exe -install

3. Start the gateway using the Microsoft Services Management Console.

Troubleshooting gateway problems
When troubleshooting gateway problems, start by checking the gateway log file.

The default gateway log file is $OMNIHOME/log/NCO_gateway_name.log.

You might receive an error message such as the following:
error in srv_select () - file descriptor x is no longer active!

This type of error message indicates that the gateway has aborted because one of
the reader or writer modules failed. In this case, check the following log files:
v NCO_gateway_name_XRWY_WRITE.log

v NCO_gateway_name_XRWY_READ.log

where X is the name of the gateway and Y is the version of the gateway.

202 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix A. Probe error messages and troubleshooting
techniques

A number of error messages are common to all probes. This includes ProbeWatch
and TSMWatch messages. Troubleshooting information is also available for probes.

See the individual probe publications for information about probe-specific
messages.

Generic error messages
Probes can generate the following types of messages: fatal, error, warning,
information, and debug.

Fatal-level messages
The probe automatically terminates when a fatal message is issued.

Table 44. Fatal level probe messages

Message Description Action

Connection to ObjectServer marked
DEAD - aborting...

The connection to the ObjectServer
ceased (and store and forward is not
enabled in the probe).

Check that the ObjectServer is
available.

Failed to access OMNIHOME
directory: "directory name"

Failed to set interfaces file
location

The probe was unable to locate the
interfaces file.

Check that the OMNIHOME
environment variable is set to the
correct destination.

Failed to connect - aborting The ObjectServer is not available. Check that the ObjectServer is
running, that the interfaces file on the
system where the probe is installed
has an entry for the ObjectServer, and
that there is no networking problem
between the two systems.

Failed to create property

Failed to define argument

Failed to initialise

Failed to set property

Failed to process arguments

Session create failed - aborting

Internal errors. See your support contract for
information about contacting IBM
Software Support.

Failed to read rules - aborting A property or command-line option
is pointing to a non-existent rules file.

Check that the command-line option
or properties file refers to the correct
rules file.

Field "field name" not found in
status table

No matching field found for "field
name"

The rules file being used refers to a
field of the format @fieldname which
does not exist in the status table.

Check the rules file and correct the
problem.

© Copyright IBM Corp. 1994, 2013 203

Table 44. Fatal level probe messages (continued)

Message Description Action

Unknown data type returned from
ObjectServer

The ObjectServer has returned
unknown data.

See your support contract for
information about contacting IBM
Software Support.

Error-level messages
The probe is likely to terminate when an error message is issued.

Table 45. Error level probe messages

Message Description Action

Can't set generic property
"property name" via command line

Property "property name" for
option "option name" does not
exist

An option in the probe is not
mapped correctly to a property.

Check the properties file for the
named property and see the probe
publication for supported properties.

Could not send alert The probe was unable to send an
alert (usually an internal alert) to the
ObjectServer.

Check that the ObjectServer is
available.

Could not set "fieldname" field The probe was unable to set a field
value. This may be because the
ObjectServer tables have been
modified so that default fields are no
longer present.

Check if the ObjectServer tables have
been modified.

CreateAndSet failed

CreateAndSet failed for attr:
"element name"

The probe is unable to create an
element.

See your support contract for
information about contacting IBM
Software Support.

Error Setting SIGINT Handler

Error Setting SIGQUIT Handler

Error Setting SIGTERM Handler

The probe was unable to set up a
signal handler for either an INT ,
QUIT, or TERM.

See your support contract for
information about contacting the IBM
Software Support.

Failed to open file: "file name" A file referred to in the rules file (for
example, with the table function)
does not exist.

Check the rules file and ensure the
file is available.

Failed to open message log: "file
name"

The probe is unable to open the
specified log file.

Check the command line or
properties file and correct the
problem.

Failed to open Properties file:
"properties file name"

The probe is unable to open the
properties file.

Check the properties file or command
line to ensure the properties file is in
the specified location.

Failed to open Rules file: "rules
file name"

The rules file for the probe is
not available or incorrectly
specified.

The probe is unable to open the rules
file.

Check the properties file or command
line to ensure the rules file is in the
specified location.

204 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 45. Error level probe messages (continued)

Message Description Action

No extraction data for "regexp" -
missing ()'s?

Regexp doesn't match for "string"

A regular expression being used in
the extract function may be missing
parentheses.

The string data that is being used to
extract may not match the regular
expression.

The extract function is unable to
extract data.

Check the rules file and correct the
problem.

Option "option name" used without
argument

The option used expects a value
which has not been supplied.

Check the probe publication and the
contents of the command line.

OS Error: "error message"

Procedure "procedure name": "error
message"

Server "server name": "error
message"

There is an error in the Sybase
connection. There should be a
subsequent message from the probe
which details the effect of this error.

See your support contract for
information about contacting IBM
Software Support.

Properties file: "error
description" at line "line no"

There is an error in the format of the
properties file.

Check the properties file at the
specified line number and correct the
problem.

PropGetValue failed A required property has not been set. Check the properties file.

Regular Expression Error: "regexp" A regular expression is incorrectly
formed in the rules file.

Check the rules file for the regular
expression and correct the problem.

Results processing failed

Unexpected return from results
processing

Unexpected value during results
processing

There is a problem with the
ObjectServer.

See your support contract for
information about contacting IBM
Software Support.

Rules file: "error description" at
line "line no"

There is an error in the rules file
format or syntax.

Check the rules file at the specified
line number and correct the problem.

SendAlert failed The probe was unable to send an
alert to the ObjectServer.

Check that the ObjectServer is
available.

SessionProcess failed The probe was unable to process the
alert against the rules file.

See your support contract for
information about contacting IBM
Software Support.

Unknown message level "message
level string" - using WARNING
level

The properties file or command line
specified a message level which is
not supported.

Check the properties file or command
line and use a supported message
level (debug, info, warning, error,
fatal).

Unknown option: "option name" An option has been used on the
command line to start the probe
which is not supported by the probe.

Check the probe documentation and
the contents of the command line.

Unknown property "property name" -
ignored

A property specified in the properties
file does not exist in the probe.

Check the properties file for the
named property and see the probe
publication for supported properties.

Appendix A. Probe error messages and troubleshooting techniques 205

Warning-level messages
These messages are issued as warnings but should not cause the probe to
terminate.

Table 46. Warning level probe messages

Message Description Action

Failed to install Client Message
Callback

Failed to install Server Message
Callback

Failed to retrieve connection
status - attempting to continue

Results processing failed

There is a problem with the
ObjectServer.

The probe will try to continue.

Failed to set SYBASE in
environment

The probe was unable to override the
SYBASE environment variable.

Check that the SYBASE environment
variable is correctly set.

New value for field "field name"
truncated to "number" characters

A string being copied into an alert
field has had to be truncated to fit
the field.

Check the rules file.

Type mismatch for property
"property name" - new value
ignored

A property has been set with the
wrong data type.

Check the properties file or command
line to ensure that the property is
correctly set.

Information-level messages
This message is for information purposes.

Table 47. Information level probe messages

Message Description Action

Using stderr for logging The probe was unable to open a log
file.

No action required. The probe is
writing messages to stderr.

Debug-level messages
Debug level messages provide information about the internal functions of the
probe. These messages are aimed at probe developers but are listed here for
completeness.

Table 48. Debug level probe messages

Message Description Action

A value for "string" doesn’t exist
in lookup table "table name"

A value requested from a lookup
table is not available.

No action required. The function in
the rules file returns an empty string.

206 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 48. Debug level probe messages (continued)

Message Description Action

Attempted to duplicate NULL string

Attempted to free NULL pointer

Attempted to realloc NULL pointer

Failed to allocate memory
(Requested size was "number"
bytes)

Failed to duplicate string

Failed to reallocate memory block
at address "hex address"
(Requested size was "number"
bytes)

An error or problem has occurred in
the memory allocation or string
handling components of the probe
library.

No action required. The library
handles the problem.

Failed to allocate command
structure

Failed to allocate context
structure

Failed to bind column

Failed to connect

Failed to describe column

Failed to fetch number of columns

Failed to initialise Sybase
internals: "number"

Failed to send command

Failed to set appname

Failed to set command query

Failed to set hostname

Failed to set password

Failed to set username

Got a row fail - continuing

No columns in result set

A problem or error has occurred at
the Sybase or ObjectServer
connection level.

N/A

Failed to flush alerts before EXIT

Problem during disconnect before
EXIT

Problem during session destruction
before EXIT

Problem during shutdown before
EXIT

A problem has occurred during probe
shutdown.

N/A

New value for field "field name"
is "value"

A field value has been set. N/A

Appendix A. Probe error messages and troubleshooting techniques 207

Table 48. Debug level probe messages (continued)

Message Description Action

OplInitialise() called more than
once

Multiple calls have been made to the
OplInitialise C probe API function,
which can only be called once.

N/A

ProbeWatch and TSMWatch messages
In some situations, a probe or TSM generates events of its own. These events can
provide information (such as startup or shutdown messages) or identify problems.

A number of elements are common to all ProbeWatch and TSMWatch messages.

ProbeWatch and TSMWatch messages are processed in the rules file and converted
into alerts like other events. The following table shows the elements that are
common to ProbeWatch and TSMWatch events.

Table 49. Common ProbeWatch and TSMWatch elements

Element name Description

Summary Summary string, described in the following tables.

Node Name of the node on which the probe or TSM is running.

Agent Name of the probe or TSM.

Manager ProbeWatch or TSMWatch.

The following table describes summary strings that are common to all probes and
TSMs.

Table 50. Common ProbeWatch and TSMWatch summary strings

ProbeWatch/TSMWatch message Description Cause

Going down ... The probe or TSM is shutting down. The probe or TSM is running a
shutdown routine.

Running ... The probe or TSM has started
running.

The probe or TSM has just been
started.

Unable to get events ... The probe or TSM encountered a
problem while listening for events.

There was a problem initializing the
connection or there was a license or
connection failure after some events
were received. See your support
contract for information about
contacting IBM Software Support.

Rules file reread upon SIGHUP
successful ...

The probe successfully re-read its
rules file on receipt of a SIGHUP
signal.

The probe received a SIGHUP signal.

Rules file reread upon SIGHUP
failed ...

The probe could not re-read its rules
file on receipt of a SIGHUP signal.

The probe received a SIGHUP signal.

Heartbeat ... Heartbeat event Not applicable

See the individual probe publications for additional summary strings for each
probe.

208 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

TSMWatch messages are in the same format as ProbeWatch messages. The
following table describes summary strings that are common to all TSMs.

Table 51. Common TSMWatch summary strings

TSMWatch message Description Action

Connection Attempted ...

Connection Succeeded ...

Connection Failed ...

Connection Timed out ...

Connection Lost ...

Messages relating to the establishment of a TCP/IP
connection.

N/A

Disconnection Attempted ...

Disconnection Succeeded ...

Disconnection Failed ...

Messages relating to relinquishing a TCP/IP connection. N/A

Wakeup Attempted ...

Wakeup Succeeded ...

Wakeup Failed ...

Messages relating to wake up functionality. N/A

Login Attempted ...

Login Succeeded ...

Login Timed out ...

Login Failed ...

Messages relating to host login. N/A

Logout Attempted ...

Logout Succeeded ...

Logout Timed out ...

Logout Failed ...

Messages relating to host logout. N/A

Heartbeat Sent ...

Heartbeat Received ...

Heartbeat Timed out ...

Messages relating to sending and receiving heartbeat
messages to and from the host.

N/A

Resynchronisation Attempted ...

Resynchronisation Succeeded ...

Resynchronisation Failed ...

Messages relating to synchronizing current alerts between
the switch and Tivoli Netcool/OMNIbus.

N/A

Appendix A. Probe error messages and troubleshooting techniques 209

Troubleshooting probes
This topic describes some of the common problems experienced by Tivoli
Netcool/OMNIbus users and explains possible causes and solutions.

This troubleshooting information is divided into two areas:
v Common problem causes
v What to do if

Table 52. Troubleshooting probes

Area Description

Common problem causes This information contains a list of common problem causes. If you are
unsure what your problem is, you should start by reading this part and
following the instructions. If you cannot solve your problem by
following the instructions in this part, move on to the "What to do if"
information.

What to do if This information describes common symptoms caused by probe
problems and step-by-step instructions to help you locate and solve the
problem. If none of the headings match the symptoms of your problem,
read through the lists of instructions and make sure that you have tried
all of the most likely solutions listed there.

Common problem causes

The most common causes of probe problems are:
v Incorrectly set OMNIHOME environment variable
v Errors in the rules file, particularly in extract statements
v Configuration errors in the properties file

For information about setting the OMNIHOME environment variable, see the IBM
Tivoli Netcool/OMNIbus Installation and Deployment Guide.

Check that all of the properties are set correctly in the probe properties file. For
example, check that the Server property contains the correct ObjectServer or proxy
server name and that the RulesFile property contains the correct rules file name.

If you cannot solve the problem, read through the next section and make sure that
you have tried all of the most likely solutions listed there.

What to do if
The headings in this topic describe the most common symptoms of probe
problems. Find the heading that most closely describes your problem and follow
the instructions until you have located the cause and solved the problem.

If none of the headings match the symptoms of your problem, read through the
lists of instructions and make sure that you have tried all of the most likely
solutions listed there. If you have tried all of the suggested problem solutions and
your probe still does not work, contact IBM Software Support.

210 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The probe does not start

If the probe does not start:
1. Run the probe in debug mode.
2. Check that the ObjectServer is running by trying to connect using the nco_sql

utility.
If you can connect successfully, the ObjectServer is running. If the
ObjectServer is not running, this is likely to be the cause of the problem.

3. Check that there are no other probes running with the same configuration
using the following command:
ps -ef | grep nco_p

A list of probe processes is displayed. Check that none of the processes
correspond to the same type of probe. You cannot run two identical probe
configurations because this duplicates all of the events forwarded to the
ObjectServer.

4. Check that you are using the correct probe for the current version of the target
software.

5. Check that there are no syntax errors in the rules file.
6. Check that your system has not run out of system resources and can launch

more processes. You can do this using df -k or top. See the df and top man
pages for more information about using these commands.

7. Check to see if the $OMNIHOME/var/probename.saf store-and-forward file exists.
If it exists, check that it has not become too large. If your disk is full, the
probes and ObjectServers are not able to work properly.
Attention: Store and forward is not designed to handle very large numbers
of events. Left unattended, a store-and-forward file will continue to grow until
it runs out of disk space.

8. Check that the store-and-forward file has not been corrupted. If the
store-and-forward file has been corrupted there should be an error message in
the log file ($OMNIHOME/log/probename.log). If the file is corrupted, delete it
and restart the probe.

9. Check that the probe binary you are trying to run is the correct one for the
current architecture by entering:
$OMNIHOME/bin/arch/probename -version

Check that the probe version matches your system architecture.
If you are running the probe on a remote host:

10. Check that the probe host can connect to the ObjectServer host using the ping
command. Try to ping the ObjectServer host machine using the hostname and
the IP address. See the ping man page for more information about how to do
this.
If you cannot connect to the ObjectServer host using the ping command, there
is a problem with the connection between your probe host and your
ObjectServer host.

11. Check that the ObjectServer has been configured correctly in the Server Editor
(nco_xigen) and that the interfaces information has been distributed to the
ObjectServer and probe hosts.

12. Check to see if there is a firewall between the probe host and the ObjectServer
host. If there is, make sure that the firewall allows traffic between the probe
and the ObjectServer.

Appendix A. Probe error messages and troubleshooting techniques 211

Related tasks:
“Testing rules files” on page 58
You can test the syntax of a rules file by using the Probe Rules Syntax Checker,
nco_p_syntax. This is more efficient than running the probe to test that the syntax
of the rules file is correct.
“Debugging rules files” on page 59
When you change the rules file, add new rules, or create lookup tables, it is useful
to test the probe by running it in debug mode. Debug mode shows how an event
is being parsed by the probe and can uncover any problems with the rules file.
Related reference:
Chapter 6, “Common probe properties and command-line options,” on page 113
A number of properties and command-line options are common to all probes and
TSMs.

The probe is not sending alerts to the ObjectServer
If the probe is not sending alerts to the ObjectServer:
1. Check that the probe is running by entering:

ps -ef | grep nco_p

A list of probe processes is displayed. If the probe is not running, start the
probe from the command line.

2. Check that there are no other probes running with the same configuration by
entering:
ps -ef | grep nco_p

A list of probe processes is displayed. Check that none of the processes
correspond to the same type of probe. You cannot run two identical probe
configurations because this duplicates all of the events forwarded to the
ObjectServer.

3. Read the probe properties file and check that all of the properties are set
correctly. For example, check that the Server property contains the correct
ObjectServer name and that the RulesFile property contains the correct rules
file name.

4. Check that the probe event source has events to send to the ObjectServer.
5. Check that the ObjectServer you are logged in to is the same ObjectServer that

the probe is forwarding events to.
6. Check that the event source you are trying to probe is working correctly. See

the documentation supplied with your element manager for more information
about how to do this.

7. Check that you are using the correct probe.
8. Check that the probe is not running in store-and-forward mode. To do this,

check the $OMNIHOME/var/probename.saf and $OMNIHOME/var/probename.reco
files to see if they are growing. If they are, disable store-and-forward mode.

9. Check that your system has not run out of system resources and can launch
more processes. You can do this using df -k or top. See the df and top man
pages for more information about using this command.

10. Check for any discard functions in the probe rules file. The discard function
must be in a conditional statement; otherwise, all events are discarded.
If you are running the probe on a remote host:

11. Check that the probe host can connect to the ObjectServer host using the ping
command. Try to ping the ObjectServer host machine using the hostname and
the IP address. See the ping man page for more information about how to do
this.

212 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

If you cannot connect to the ObjectServer host using the ping command, there
is a problem with the connection between your probe host and your
ObjectServer host.

12. Check that the ObjectServer has been configured correctly through the Server
Editor (nco_xigen) and that the interfaces information has been distributed to
the ObjectServer and probe hosts.

13. Check to see if there is a firewall between the probe host and the ObjectServer
host. If there is, make sure that the firewall allows traffic between the probe
and the ObjectServer.

Related concepts:
“Store-and-forward mode for probes” on page 11
Probes can continue to run if the target ObjectServer is down. During this period,
the probe switches to store mode. The probe reverts to forward mode when the
ObjectServer is functional again.

The probe is losing events
If not all of the events are being forwarded to the ObjectServer:
1. Run the probe in debug mode.
2. Check that the event source you are trying to probe is working correctly. See

the documentation supplied with your element manager for more information
about how to do this.

3. Check that the probe event source has events to send to the ObjectServer.
4. Check that all of the properties in the properties file are set correctly. For

example, check that the Server property contains the correct ObjectServer name
and that the RulesFile property contains the correct rules file name.

5. Check for any discard functions in the probe rules file. The discard function
discards events based on specified conditions.

Related tasks:
“Debugging rules files” on page 59
When you change the rules file, add new rules, or create lookup tables, it is useful
to test the probe by running it in debug mode. Debug mode shows how an event
is being parsed by the probe and can uncover any problems with the rules file.

The probe is consuming too much CPU time
If the probe is consuming too much CPU time:
1. Run the probe in debug mode.
2. Check that the probe can connect to the event source.
3. Check to see if the $OMNIHOME/var/probename.saf store-and-forward file exists.

If it exists, check that it has not become too large. If your disk is full, the
probes and ObjectServer will not be able to work properly.
Attention: Store and forward is not designed to handle very large numbers of
alerts. Left unattended, a store-and-forward file will continue to grow until it
runs out of disk space.

4. Check that the store-and-forward file has not been corrupted. If the
store-and-forward file has been corrupted there should be an error message in
the probe log file ($OMNIHOME/log/probename.log). If the store-and-forward file
is corrupted, delete it and restart the probe.

Appendix A. Probe error messages and troubleshooting techniques 213

The event list is not being populated properly
If the probe is detecting events and forwarding them to the ObjectServer but the
event list fields are not being populated correctly:
1. Run the probe in debug mode.
2. Check that fields which are not being populated properly are being correctly

mapped to elements in the rules file.
3. Check that it is not a GUI problem by querying the alerts.status table using

ObjectServer SQL.

214 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix B. Common gateway error messages

A number of error messages are common to all gateways. The gateway_name in
each error message refers to the individual gateway name and indicates which
gateway generated the error.

Table 53. Common gateway error messages

Error Description Action

Gateway_name Writer: HashAlloc
failure in _gateway_name
CacheAdd().

Gateway_name Writer: MemStrDup()
failure in _gateway_name
CacheAdd().

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer: Failed to
allocate memory.

Gateway_name Writer writer_name:
Memory allocation failed.

Gateway_name Writer: Memory
allocation failure.

Gateway_name Writer: Memory
allocation error.

Gateway_name Writer: Memory
reallocation error.

Failed to allocate memory in writer
writer_name.

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer writer_name:
Could not create serial cache -
memory problems.

Gateway_name Writer writer_name:
Failed to allocate memory for a
GPCModule handle.

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer: Failed to lock
connection mutex.

The writer failed to lock the
ObjectServer feedback connection in
order to access the connection and
feed back problem ticket data for the
associated alert. This lock failure
may be due to insufficient resources
or as a result of the underlying
threading system preventing a
deadlock between multiple threads
that are contending for the resource.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed to
re-acquire alert details from OS.

This error message comes from the
gateway cache reclamation
subsystem. This message indicates
that the gateway failed to re-acquire
the trouble ticket number and
reclaim its internal cache entry from
the ObjectServer.

Refer to your support contract for
information about contacting the
helpdesk.

© Copyright IBM Corp. 1994, 2013 215

Table 53. Common gateway error messages (continued)

Error Description Action

Gateway_name Writer: Invalid
datatype for problem number
feedback field.

The data type is invalid. Refer to the IBM Tivoli
Netcool/OMNIbus Administration
Guide for information about data
types.

Gateway_name Writer: Serial x
already in serial Cache. Cannot
add.

The gateway tried to add a serial
number that already exists.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Serial x not
found in serial cache. Cannot
Delete.

The gateway could not delete this
alert because it has already been
deleted in Tivoli Netcool/OMNIbus.

You do not need to do anything.

Gateway_name Writer writer_name:
Failed to construct path to
gateway_name Read/Write Module.

The gateway could not locate the
reader or writer module application.

Check that the module is installed in
the correct location.

Gateway_name Writer writer_name:
Failed to construct the argument
list for gateway_name Module.

Failed to construct the argument list
for gateway module.

Check that the arguments in the
configuration file are set correctly.

Gateway_name Writer writer_name:
GPCModule creation failed.

Failed to create the GPCModule due
to insufficient memory.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to start the OS-gateway_name
Writer.

Gateway_name Writer writer_name:
Failed to start the gateway_name-OS
Reader.

Failed to start the ObjectServer
gateway reader or writer module.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Failed to shutdown gateway_name
Writer.

Failed to stop gateway writer
module.

Check the writer log file for more
information.

Gateway_name Writer writer_name:
Failed to construct path to
gateway_name Read/Write Module.

Failed to construct the path to the
gateway reader or writer module
application.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Failed to find the gateway_name
Read/Write Module [x].

Cannot find the module binary. Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Incorrect permissions on the
gateway_name module binary [x].

The module's file permissions are set
incorrectly.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Failed to create the Serial Cache
Mutex.

The gateway writer failed to create
the necessary data protection
structure for the internal serial
number cache due to insufficient
resources. This is generally due to
insufficient memory.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to create the Conn Mutex.

The gateway writer failed to create
the necessary data protection
structure for the ObjectServer
connection due to insufficient
resources.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to start the
gateway_name-to-OS service thread.

The gateway failed to spawn the
service thread.

Check that the gateway can access
the ObjectServer.

216 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 53. Common gateway error messages (continued)

Error Description Action

Gateway_name Writer writer_name:
Failed to send a shutdown request
to the gateway_name Writer.

The gateway did not shut down
cleanly.

Check the writer log file for more
information.

Failed to install SIGCHLD handler.

Failed to install SIGPIPE handler.

The gateway failed during handler
installation.

Refer to your support contract for
information about contacting the
helpdesk.

No <mapname> attribute for
gateway_name writer writer_name.

The gateway could not find the map
name.

Check the configuration file.

<mapname> attribute is not a name
for gateway_name writer
writer_name.

Incorrect writer name given. Check the configuration file.

A MAP called <map> does not exist
for gateway_name writer
writer_name.

The gateway could not find the
specified map.

Check the configuration file.

MAP <map> is invalid for
gateway_name writer writer_name.

The given map is not valid. Check the configuration file.

Map <map> is not the journal map
and cannot contain the <journal map
name> map item in gateway_name
Writer writer_name.

If this map is not the journal map,
then the JOURNAL_MAP_NAME attribute
is set incorrectly.

Check the JOURNAL_MAP_NAME
attribute in the gateway
configuration file.

Gateway_name Writer: Failed to send
gateway_name Event to the
gateway_name Writer module.

The gateway failed to send a given
event.

Check the log files for more
information.

Gateway_name Writer: Failed to wait
for return from the gateway_name
Writer module.

There was an error in retrieving the
success statement.

Check the log files for more
information.

Gateway_name Writer: Failed to read
the status return message from the
gateway_name Writer module.

The gateway failed to retrieve the
status of a module.

Check the log files for more
information.

Gateway_name Writer: Failed to send
event to gateway_name.

The module failed to send the event
to gateway.

Check the log files for more
information.

Gateway_name Writer: gateway_name
Writer Module experienced Fatal
Error.

There was a fatal error. Check the log files for more
information.

Gateway_name Writer: Failed to send
event to gateway_name. Unknown
type.

The gateway received unexpected
type.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed to
build serial index.

The gateway failed to build indexes. Check that the Serial column exists
in the ObjectServer alerts.status
table.

Incorrect data type for the Serial
column.

The gateway did not receive the
correct data type.

Check that the data type for the
Serial column in the ObjectServer
alerts.status table is an integer.

Gateway_name Writer: Failed to
build server serial index.

The gateway failed to get the server
serial index.

Check that the ServerSerial column
exists in the ObjectServer
alerts.status table.

Incorrect data type for the Server
Serial column.

The gateway did not receive the
correct data type.

Check that the data type for the
ServerSerial column in the
ObjectServer alerts.status table is an
integer.

Appendix B. Gateway error messages 217

Table 53. Common gateway error messages (continued)

Error Description Action

Gateway_name Writer: Failed to
build server name index.

The gateway failed to get the server
name index.

Check that the ServerName column
exists in the ObjectServer
alerts.status table.

Incorrect data type for the Server
Name column.

The gateway did not receive the
correct data type.

Check that the data type for the
ServerName column in the
ObjectServer alerts.status table is a
string.

Gateway_name Writer: Failed to find
field <fieldnumber> in gateway_name
Event.

The gateway could not find the field
number it was looking for.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Invalid field
name for expansion on action SQL
[<field>].

The gateway received an invalid
field name.

Refer to the IBM Tivoli
Netcool/OMNIbus Administration
Guide for information about
ObjectServer SQL.

Gateway_name Writer: Unenclosed
field expansion request in action
SQL [<sql action>].

The gateway did not find an
enclosing bracket.

Check the action.sql file.

Gateway_name Writer: Failed to turn
counter-part notification back-on.
Fatal error in gateway_name-to-OS
Feedback.

Gateway_name Writer: Failed to turn
counter-part notification off.

Gateway_name-to-OS Feedback failed.

The gateway failed to send a notify
command.

This is an internal error. Refer to
your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed to send
SQL command to ObjectServer.

Gateway_name-to-OS Feedback failed.

The gateway failed to send the SQL
command to the ObjectServer.

Check the ObjectServer log file.

Failed to find the column
<column_name> in map <map_name>.

The gateway failed to find the given
column.

Check that the given column name
is entered correctly in the
configuration file and that it is
shown in the ObjectServer
alerts.status table.

Gateway_name Writer: Failed to lock
the cache mutex.

The writer failed to lock the
ObjectServer feedback connection in
order to access the connection and
feed back problem ticket data
changes for the associated alert.

This lock failure may be due to
insufficient resources or as a result
of the underlying threading system
preventing a deadlock between
multiple threads that are contending
for the resource.

Failed to find cached problem
ticket for serial <serial number>
using map <map name>.

The gateway failed to find the
specified cache problem ticket
number.

Check that the specified ticket was
originally created by the gateway.

Gateway_name Writer: Failed to
unlock the cache mutex.

After access to the cache, an attempt
to unlock the data structures
protection lock failed. This message
indicates that the gateway is in a
position which will lead to a
deadlock situation.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Cache add
error.

The gateway could not add the
serial to the serial cache due to
insufficient resources.

Try to free more memory.

218 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 53. Common gateway error messages (continued)

Error Description Action

Gateway_name Writer writer_name:
Failed to create gateway_name Event
for journal update.

The gateway failed to create the
journal event update.

Check the writer log file.

Gateway_name Writer writer_name:
Failed to send journal update event
to gateway_name.

The gateway failed to send journal
event update.

Check the writer log file.

<attribute name> attribute is not a
string for gateway_name writer
writer_name.

An attribute in the writer was of an
incorrect data type.

Check the writer definition in the
configuration file.

No <attribute name> attribute for
gateway_name writer writer_name
given.

The gateway failed to find the
attribute.

Add the attribute to the writer
definition in the configuration file.

Gateway_name Writer writer_name:
Failed to find the <counterpart
attribute> attribute for the
writer. This is necessary due to
bi-directional nature.

An attempt to find the necessary
counterpart attribute failed.

Check the configuration file.

Gateway_name Writer writer_name: Is
not a name for an Object Server
reader.

The gateway found an incorrect data
type.

Check the configuration file.

Gateway_name Writer writer_name:
Reader <reader> was not found for
counter part.

The reader was not found. Check the counterpart configuration
in the configuration file.

Gateway_name Writer writer_name:
Failed to send SKIP Command.

This command failed to disable
IDUC on a bidirectional connection.

Refer to your support contract for
information about contacting the
helpdesk.

Connection to feedback server
failed.

The gateway failed to make a
connection.

Check the ObjectServer log file.

Failed to set the death call on the
feedback connection.

The gateway failed to set the
necessary property.

This is an internal error. Refer to
your support contract for
information about contacting the
helpdesk.

Writer counterpart error. The gateway failed to find the
counterpart attribute for gateway
writer.

Check the counterpart configuration
in the configuration file.

Gateway_name Writer: Failed to
stat() the action SQL file
"filename".

The gateway failed to stat the file in
order to determine its size.

Check the file access permissions for
the specified action file.

Gateway_name Writer: Empty action
SQL file "filename".

File "filename" is empty. Check the action SQL file.

Gateway_name Writer: Failed to open
the action SQL file "filename".

The gateway failed to open the file. Check the file permissions.

Gateway_name Writer: Failed to read
the action SQL file "filename".

The gateway failed to read the file. Check the file permissions.

Gateway_name Writer: No Action SQL
find in file "filename".

There is no action SQL in the file. Check the file.

Gateway_name Writer writer_name:
Failed to read the conversions
table.

The gateway failed to read the
conversions table.

Check the file permissions.

Appendix B. Gateway error messages 219

Table 53. Common gateway error messages (continued)

Error Description Action

Gateway_name Writer: Failed to find
PM %s in cache for return PMO
event.

The gateway has received a Problem
Management Open return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache, in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Open Feedback
Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer SQL file.

Gateway_name Writer: No Update
action SQL for gateway_name Update
event.

There is no update action SQL
statement.

Check the configuration file.

Gateway_name Writer: Failed to find
PM %s in cache for return PMU
event.

The gateway has received a Problem
Management Update return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Update
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Gateway_name Writer: Failed to find
PM %s in cache for return PMJ
event.

The gateway has received a Problem
Management Journal return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Journal
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Gateway_name Writer: Failed to find
PM %s in cache for return PMC
event.

The gateway has received a Problem
Management Close return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

220 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 53. Common gateway error messages (continued)

Error Description Action

Gateway_name Writer: Close Feedback
Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Received error code <code> from
Reader/Writer Module - [<message>].

The gateway received an error
message.

Check the module log files.

Gateway_name Writer: Failed to read
gateway_name event from
gateway_name Reader Module.

The gateway failed to read the event
sent by the gateway reader module.

Check the reader log files.

Gateway_name Writer: Received event
of type <event type> which was
unexpected.

The gateway received an unknown
event type.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Received
invalid known message from
Reader/Writer Module for this
system.

The gateway received an invalid
known message.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Received
unknown message from Reader/Writer
Module.

The gateway received an invalid
unknown message.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed to
block on data feed from
gateway_name Reader Module.

The gateway failed to block due to a
shutdown request. This message is
displayed when the gateway is
shutting down.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Fatal thread
termination. Stopping gateway.

A thread exited unexpectedly. Check the gateway log files.

<attribute name> attribute is not a
string for gateway_name writer
writer_name - IGNORED

An attribute name is not recognized.
The gateway will ignore it.

Check the gateway log files.

<attribute name> attribute must be
set to TRUE or FALSE for writer
writer_name.

An attribute name has not been set
to TRUE or FALSE.

Check the gateway configuration
file.

Gateway_name Writer writer_name:
Failed to shutdown gateway_name
Reader/Writer Modules.

The gateway failed to shut down the
reader and writer modules.

Check the module log file.

Gateway_name Writer writer_name:
Failed to disconnect feedback
connection.

The disconnect of feedback channel
failed.

Check the ObjectServer log file.

Failed to create gateway_name event
structure for a problem management
open event in writer writer_name.

The gateway writer failed to allocate
a gateway event structure for a
problem management open event
due to insufficient memory
resources.

Try to free more memory.

Gateway_name Writer: FEEDBACK
FAILED!!

The gateway failed to store the
problem number.

Check the ObjectServer log file.

Failed to create journal for
gateway_name writer writer_name
(from INSERT)

The gateway failed to create journal. Check the writer log file.

Appendix B. Gateway error messages 221

Table 53. Common gateway error messages (continued)

Error Description Action

Failed to create gateway_name event
structure for a problem management
update event in writer writer_name.

The gateway writer failed to allocate
a gateway event structure for a
problem management update event
due to insufficient memory
resources.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to delete problem ticket
from cache for serial <serial
number>.

The gateway failed to delete serial
number from cache.

This is an internal error. You can
ignore it.

Failed to create gateway_name event
structure for a PMC event in writer
writer_name.

The gateway writer failed to allocate
a gateway event structure for a
Problem Management Close event
due to insufficient memory
resources.

Try to free more memory.

222 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix C. Regular expressions

Tivoli Netcool/OMNIbus supports the use of regular expressions in search queries
that you perform on ObjectServer data. Regular expressions are sequences of atoms
that are made up of normal characters and metacharacters.

An atom is a single character or a pattern of one or more characters in parentheses.
Normal characters include uppercase and lowercase letters, and numbers.
Metacharacters are non-alphabetic characters that possess special meanings in
regular expressions.

Two types of regular expression libraries are available for use with the
ObjectServer:
v NETCOOL: This library is useful for single-byte character processing.
v TRE: This library enables use of the POSIX 1003.2 extended regular expression

syntax, and provides support for both single-byte and multi-byte character
languages. When the UTF-8 encoding is enabled on Windows, only the
characters within Unicode plane 0, the Basic Multilingual Plane (BMP), are
supported in regular expression patterns. Any character outside of the BMP,
which is found in the pattern, will result in an error. The matching strings for
the regular expression pattern can contain any UTF-8 character.

Note: Use of the TRE library can lead to a marked decrease in system
performance. Optimal system performance is achieved with the NETCOOL
library.

You can use the ObjectServer property RegexpLibrary to specify which library
should be used for regular expression matching. The NETCOOL regular expression
library is enabled by default.

NETCOOL regular expression library
If your system supports single-byte character languages, you can use the
NETCOOL regular expression library to run search queries on your data. The
NETCOOL library provides better system performance than the TRE regular
expression library.

Note: When a regular expression is written in SQL, the SQL parser first processes
string literals before passing them to the regular expression library. The SQL parser
processes backslash sequences, so single backslashes will not subsequently be seen
by the regular expression library. Therefore, when you write a regular expression
in SQL, use double backslashes to escape reserved characters.

For example, to escape the parentheses in the string ’1_(22)’, use this expression:
’1_\\(22\\)’.

The NETCOOL regular expression library supports the use of normal characters
and metacharacters. The following table describes the set of metacharacters
supported by the NETCOOL regular expression library.

© Copyright IBM Corp. 1994, 2013 223

Table 54. Metacharacters

Metacharacter Description Examples

* Matches zero or more
instances of the preceding
atom. Matches as many
instances as possible.

goo* matches my godness, my goodness, and
my gooodness, but not my gdness.

+ Matches one or more
instances of the preceding
atom. Matches as many
instances as possible.

goo+ matches my goodness and my
gooodness, but not my godness.

? Matches zero or more
instances of the preceding
atom.

goo? matches my godness, my goodness, and
my gooodness, but not my gdness.

colou?r matches color and colour.

end-?user matches enduser and end-user.

$ Matches the end of the
string.

end$ matches the end, but not the ending.

^ Matches the beginning of the
string.

^severity matches severity level 5, but
not The severity is 5.

. Matches any single character. b.at matches baat, bBat, and b4at, but not
bat or bB4at.

[abcd] Matches any character in the
square brackets.

[nN][oO] matches no, nO, No, and NO.

gr[ae]y matches both spellings of the word
’grey’; that is, gray and grey.

[a-d] Matches any character in the
range of characters separated
by a hyphen (-).

[0-9] matches any decimal digit.

[ab3-5] matches a, b, 3, 4, and 5.

^[A-Za-z]+$ matches any string that
contains only upper or lowercase
characters.

[^abcd]

[^a-d]

Matches any character except
those in the square brackets
or in the range of characters
separated by a hyphen (-).

[^0-9] matches any string that does not
contain any numeric characters.

() Indicates that the characters
within the parentheses
should be treated as a
character pattern.

A(boo)+Z matches AbooZ, AboobooZ, and
AbooboobooZ, but not AboZ or AboooZ.

Jan(uary)? matches Jan and January.

| Matches one of the atoms on
either side of the pipe
character.

A(B|C)D matches ABD and ACD, but not AD,
ABCD, ABBD, or ACCD.

(AB | CD) matches AB and CD, but not ABD
and ACD.

\ Indicates that the
metacharacter following
should be treated as a
regular character. The
metacharacters listed in this
table require a backslash
escape character as a prefix
to switch off their special
meaning.

* matches the * character.

\\ matches the \ character.

\. matches the . character.

\[[0-9]*\] matches an opening square
bracket, followed by any digits or spaces,
followed by a closed bracket.

224 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts:
“TRE regular expression library”
Use the TRE regular expression library to run search queries on both single-byte
and multi-byte character languages.

TRE regular expression library
Use the TRE regular expression library to run search queries on both single-byte
and multi-byte character languages.

The TRE regular expression library supports usage of the POSIX 1003.2 extended
regular expression syntax in the form of:
v Metacharacters
v Minimal or non-greedy quantifiers
v Bracket expressions
v Constructs for multicultural support
v Backslash sequences

Restriction: A marked decrease in system performance might be observed when
using this library.
Related reference:
“NETCOOL regular expression library” on page 223
If your system supports single-byte character languages, you can use the
NETCOOL regular expression library to run search queries on your data. The
NETCOOL library provides better system performance than the TRE regular
expression library.

Metacharacters
Metacharacters are non-alphabetic characters that possess special meanings in
regular expressions.

The set of metacharacters that can be used in extended regular expression syntax is
as follows:

* + ? $ ^ . () | \ {} [

The following table describes all of these metacharacters except the square bracket
[metacharacter. You can use the [metacharacter to construct bracket expressions.

Table 55. Metacharacters

Metacharacter Description Examples

* Matches zero or more
instances of the preceding
atom. Matches as many
instances as possible.

goo* matches my godness, my goodness, and
my gooodness, but not my gdness.

+ Matches one or more
instances of the preceding
atom. Matches as many
instances as possible.

goo+ matches my goodness and my
gooodness, but not my godness.

Appendix C. Regular expressions 225

Table 55. Metacharacters (continued)

Metacharacter Description Examples

? Matches zero or more
instances of the preceding
atom.

goo? matches my godness, my goodness, and
my gooodness, but not my gdness.

colou?r matches color and colour.

end-?user matches enduser and end-user.

$ Matches the end of the
string.

end$ matches the end, but not the ending.

^ Matches the beginning of the
string.

The ^ metacharacter can also
be used in bracket
expressions.

^severity matches severity level 5, but
not The severity is 5.

. Matches any single character. b.at matches baat, bBat, and b4at, but not
bat or bB4at.

() Indicates that the characters
within the parentheses
should be treated as a
character pattern.

A(boo)+Z matches AbooZ, AboobooZ, and
AbooboobooZ, but not AboZ or AboooZ.

Jan(uary)? matches Jan and January.

| Matches one of the atoms on
either side of the pipe
character.

A(B|C)D matches ABD and ACD, but not AD,
ABCD, ABBD, or ACCD.

(AB | CD) matches AB and CD, but not ABD
and ACD.

\ Indicates that the
metacharacter following
should be treated as a
regular character. The
metacharacters listed in this
section require a backslash
escape character as a prefix
to switch off their special
meaning.

The \ metacharacter can also
be used to construct
backslash sequences.

* matches the * character.

\\ matches the \ character.

\. matches the . character.

{m , n} Matches from m to n
instances of the preceding
atom, where m is the
minimum and n is the
maximum. Matches as many
instances as possible.
Note: m and n are unsigned
decimal integers between 0
and 255.

f{1,2}ord matches ford and fford.

N/{1,3}A matches N/A, N//A, and N///A, but
not NA or N////A.

{m ,} Matches m or more instances
of the preceding atom.

Z{2,} matches two or more repititions of Z.

{m} Matches exactly m instances
of the preceding atom.

a{3} matches aaa.

1{2} matches 11.

226 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related reference:
“Bracket expressions” on page 228
Bracket expressions can be used to match a single character or collating element.
“Backslash sequences” on page 230
When constructing regular expressions, the backslash character can be used in a
variety of ways.

Minimal or non-greedy quantifiers
Regular expressions are generally considered greedy because an expression with
repetitions will attempt to match as many characters as possible. The asterisk (*),
plus (+), question mark (?), and curly braces ({}) metacharacters exhibit
'repetitious' behavior, and attempt to match as many instances as possible.

To make a subexpression match as few characters as possible, a question mark (?)
can be appended to these metacharacters to make them minimal or non-greedy. The
following table describes the non-greedy quantifiers.

Table 56. Minimal/non-greedy quantifiers

Quantifier Description Examples

*? Matches zero or more
instances of the preceding
atom. Matches as few
instances as possible.

Given an input string of Netcool Tool
Library:

v The first group in ^(.*l).*$ matches
Netcool Tool .

v The first group in ^(.*?l).*$ matches
Netcool.

+? Matches one or more
instances of the preceding
atom. Matches as few
instances as possible.

Given an input string of little:

v .*?l matches l.

v ^.+l matches littl.

?? Matches zero or one instance
of the preceding atom.
Matches as few instances as
possible.

.??b matches ab in abc, and b in bbb.

.?b matches ab in abc, and bb in bbb.

{m , n} ? Matches from m to n
instances of the preceding
atom, where m is the
minimum and n is the
maximum. Matches as few
instances as possible.
Note: m and n are unsigned
decimal integers between 0
and 255.

Given an input string of Netcool Tool Cool
Fool Library:

v ^((.*?ool)*).*$ matches Netcool Tool
Cool Fool.

v ^((.*?ool)+).*$ matches Netcool Tool
Cool Fool.

v ^((.*?ool)+?).*$ matches Netcool.

v ^((.*?ool){2,5}).*$ matches Netcool
Tool Cool Fool.

v ^((.*?ool){2,5}?).*$ matches Netcool
Tool.

v ^((.*?ool){2,5}) [FL].*$ matches
Netcool Tool Cool Fool.

v ^((.*?ool){2,5}?) [FL].*$ matches
Netcool Tool Cool.

Appendix C. Regular expressions 227

Table 56. Minimal/non-greedy quantifiers (continued)

Quantifier Description Examples

{m ,} ? Matches m or more instances
of the preceding atom.
Matches as few instances as
possible.

Given an input string of Netcool Tool Cool
Fool Library:

v ^((.*?ool){2,}).*$ matches Netcool
Tool Cool Fool.

v ^((.*?ool){2,}?).*$ matches Netcool
Tool.

v ^((.*?ool){2,}) [FL].*$ matches
Netcool Tool Cool Fool.

v ^((.*?ool){2,}?) [FL].*$ matches
Netcool Tool Cool.

Bracket expressions
Bracket expressions can be used to match a single character or collating element.

The following table describes how to use bracket expressions.

Table 57. Bracket expressions

Expression Description Examples

[abcd] Matches any character in the
square brackets.

[nN][oO] matches no, nO, No, and NO.

gr[ae]y matches both spellings of the word
'grey'; that is, gray and grey.

[a-d] Matches any character in the
range of characters separated
by a hyphen (-).

[0-9] matches any decimal digit.

[ab3-5] matches a, b, 3, 4, and 5.

[0-9]{4} matches any four-digit string.

^[A-Za-z]+$ matches any string that
contains only upper or lowercase
characters.

\[[0-9]*\] matches an opening square
bracket, followed by any digits or spaces,
followed by a closed bracket.

[^abcd]

[^a-d]

Matches any character except
those in the square brackets
or in the range of characters
separated by a hyphen (-).

[^0-9] matches any string that does not
contain any numeric characters.

[.ab.] Matches a multi-character
collating element.

[.ch.] matches the multi-character collating
sequence ch (if the current language
supports that collating sequence).

[=a=] Matches all collating
elements with the same
primary sort order as that
element, including the
element itself.

[=e=] matches e and all the variants of e in
the current locale.

Note the following points:
v The caret character (^) only has a special meaning when included as the first

character after the open bracket ([). Otherwise, it is treated as a normal
character.

228 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

v The hyphen character (-) is treated as a normal character only under either of
the following conditions:
– The hyphen character is the first or last character within the square brackets,

for example, [ab-] or [-xy].
– The hyphen character is the only (both first and last) character; that is, [-].

v To match a closing square bracket within a bracketed expression, the closing
bracket must be the first character within the enclosing brackets; for example,
[][xy] matches], [, x, and y.

v Other metacharacters are treated as normal characters within square brackets,
and do not need to be escaped; for example, [ca$] will match c, a, or $.

Related reference:
“Metacharacters” on page 225
Metacharacters are non-alphabetic characters that possess special meanings in
regular expressions.

Constructs for multicultural support
The sort order of characters (and any of their variants) is locale-dependent, so
different regular expressions are generally required to match characters of the same
class, in different locales. To facilitate multicultural support, a set of predefined
names enclosed in [: and :] can be used to represent characters of the same class.

The set of valid names depends on the value of the LC_CTYPE environment
variable of the current locale, but the names shown in the following table are valid
in all locales.

Table 58. Multicultural constructs

Construct Description

[:alnum:] Matches any alphanumeric character.

[:alpha:] Matches any alphabetic character.

[:blank:] Matches any blank character - that is, space and TAB.

[:cntrl:] Matches any control characters; these are non-printable.

[:digit:] Matches any decimal digits.

[:graph:] Matches any printable character except space.

[:lower:] Matches any lowercase alphabetic character.

[:print:] Matches any printable character including space.

[:punct:] Matches any printable character that is not a space or
alphanumeric; that is, punctuation.

[:space:] Matches any whitespace character.

[:upper:] Matches any uppercase alphabetic character.

[:xdigit:] Matches any hexadecimal digit.

Example: Multicultural constructs

[[:lower:]AB] matches the lowercase letters and uppercase A and B.

[[:space:][:alpha:]] matches any character that is either whitespace or aphabetic.

[[:alpha:]] matches to [A-Za-z] in the English locale (en), but would include
accented or additional letters in another locale.

Appendix C. Regular expressions 229

Backslash sequences
When constructing regular expressions, the backslash character can be used in a
variety of ways.

The backslash character (\) can be used to:
v Turn off the special meaning of metacharacters so they can be treated as normal

characters.
v Include non-printable characters in a regular expression.
v Give special meaning to some normal characters.
v Specify backreferences. Backreferences are used to specify that an earlier matching

subexpression is matched again later.

Note: The backslash character cannot be the last character in a regular expression.

When a regular expression is written in SQL, the SQL parser first processes string
literals before passing them to the regular expression library. The SQL parser
processes backslash sequences, so single backslashes will not subsequently be seen
by the regular expression library. Therefore, when you write a regular expression
in SQL, use double backslashes to escape reserved characters.

For example, to escape the parentheses in the string ’1_(22)’, use this expression:
’1_\\(22\\)’.

The following table describes how to specify backslash sequences for non-printable
characters and backreferences. This table also shows how to use backslash
sequences to apply special meaning to some normal characters.

Table 59. Backslash sequences

Backslash sequence Description

\a Matches the bell character (ASCII code 7).

\e Matches the escape character (ASCII code 27).

\f Matches the form-feed character (ASCII code 12).

\n Matches the new-line or line-feed character (ASCII code 10).

\r Matches the carriage return character (ASCII code 13).

\t Matches the horizontal tab character (ASCII code 9).

\v Matches the vertical tab character.

\< Matches the beginning of a word, or the beginning of an identifier,
defined as the boundary between non-alphanumerics and
alphanumerics (including underscore). This matches no characters,
only the context.

\> Matches the end of a word or identifier.

\b Matches a word boundary; that is, matches the empty string at the
beginning or end of an alphanumeric sequence.

Enables a 'whole words only' search.

\B Matches a non-word boundary; that is, matches the empty string
not at the beginning or end of a word.

\d Matches any decimal digit.

Equivalent to [0-9] and [[:digit:]].

230 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 59. Backslash sequences (continued)

Backslash sequence Description

\D Matches any non-digit character.

Equivalent to [^0-9] or [^[:digit:]].

\s Matches any whitespace character.

Equivalent to [\t\n\r\f\v] or [[:space:]].

\S Matches any non-whitespace character.

Equivalent to [^ \t\n\r\f\v] or [^[:space:]].

\w Matches a word character; that is, any alphanumeric character or
underscore.

Equivalent to [a-zA-Z0-9_] or [[:alnum:]_].

\W Matches any non-alphanumeric character.

Equivalent to [^a-zA-Z0-9_] or [^[:alnum:]_].

\[1-9] A backslash followed by a a single non-zero decimal digit n is
termed a backreference.

Matches the same set of characters matched by the nth
parenthesized subexpression.

Example backslash constructs

\bcat\b matches cat but not cats or bobcat.

\d\s matches a digit followed by a whitespace character.

[\d\s] matches any digit or whitespace character.

.([XY]).([XY]). matches aXbXc and aYbYc, but also aXbYc and aYbXc. However,

.([XY]).\1. will only match aXbXc and aYbYc.
Related reference:
“Metacharacters” on page 225
Metacharacters are non-alphabetic characters that possess special meanings in
regular expressions.

Appendix C. Regular expressions 231

232 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix D. ObjectServer tables and data types

This appendix contains ObjectServer database table information.

alerts.status table
The alerts.status table contains status information about problems that have been
detected by probes.

Note: You can display only columns of type CHAR, VARCHAR, INCR, INTEGER,
and TIME in the event list. Do not add columns of any other type to the
alerts.status table.

The following table describes the columns in the alerts.status table.

Table 60. Columns in the alerts.status table

Column
name Data type Mandatory Description

Identifier varchar(255) Yes Controls ObjectServer deduplication. The Identifier field controls
the deduplication feature of the ObjectServer, and also supports
compatibility with the GenericClear automation by ensuring
resolution events are properly inserted into the ObjectServer and
not deduplicated with their respective problem events.

The following identifier correctly identifies repeated events in a
typical environment:

@Identifier=@Node+" "+@AlertKey+"
"+@AlertGroup+" "+@Type+" "+@Agent+"
"+@Manager

Additional information might need to be appended to the
Identifier field to ensure correct deduplication and compatibility
with the GenericClear automation. For example, if an SNMP
specific trap contains a status enumeration value in one of its
variable bindings, the specific trap number and the value of the
relevant varbind must be appended to the Identifier field as
follows:

@Identifier=@Node +“ “+ @AlertKey+“
“+@AlertGroup+“ “+@Type+“ “+@Agent+“
“+@Manager+“ “+$specific-trap+“
“+$2

Serial incr Yes The Tivoli Netcool/OMNIbus serial number for the row.

Node varchar(64) Yes Identifies the managed entity from which the alarm originated.
This could be a device or host name, service name, or other entity.

For IP network devices or hosts, the Node column contains the
resolved name of the device or host. In cases where the name
cannot be resolved, the Node column must contain the IP address
of the device or host.

For non-IP network devices or hosts, alarms must contain similar
information to the IP device or host. That is, the Node column
must contain the name of the device or host which allows direct
communication, or can be resolved to allow direct communication,
with the device or host.

© Copyright IBM Corp. 1994, 2013 233

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

NodeAlias varchar(64) No The alias for the node. For network devices or hosts, this should be
the logical (layer-3) address of the entity. For IP devices or hosts,
this must be the IP address.

For non-IP devices or hosts, there are several addressing schemes
that could be used. When selecting a value for the NodeAlias field,
the value should allow for direct communication with the device
or host. For example, a device managed by TL-1. The NodeAlias
field may be populated by a lookup table or Netcool/Impact
policy, with the IP address and port number of the terminal server
through which the TL-1 device can be reached.

Manager varchar(64) Yes The descriptive name of the probe that collected and forwarded
the alarm to the ObjectServer. This can also be used to indicate the
host on which the probe is running. Ideally this is set in the
properties file of the probe, however the rules file should check to
ensure it is set correctly, and modify if necessary.

For example, the following syntax can be used to define the
Manager field:

@Manager="MTTrapd Probe on" + hostname()

Agent varchar(64) No The descriptive name of the sub-manager that generated the alert.

Probes which process SNMP traps must set the Agent field to
either the name of the vendor or the standards body which defined
the trap, and provide a description of the MIB, or MIB Definition
Name, where the trap is defined. It must be presented in the
following format: vendor-MIB description

For example::

Cisco-Accounting Control, Cisco-Health Monitor,
IETFBRIDGEMIB, ATMF-ATM-FORUM-MIB

Optionally, vendor-specific information, such as device model
numbers, can be appended to the Agent field for vendor-specifc
implementations of standard traps.

The Syslog probe should set the Agent field to the name of the
vendor which defined the received message, and provide any
logical description for the family of messages to which the received
message belongs.

For example, Cisco defines messages received from IOS-based
devices in separate documentation from messages received from
the PIX Firewall. The format of the messages is also slightly
different. Therefore the Syslog messages received from Cisco will
have the Agent field set to either Cisco-IOS or Cisco- PIX
Firewall.

The TL-1 TSM should set the Agent field to the name of the
vendor which defined the received message, and provide any
logical description for the family of messages to which the received
message belongs.

234 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

AlertGroup varchar(255) No The descriptive name of the failure type indicated by the alert. For
example:

Interface Status or CPU Utilization).

The AlertGroup field must contain the same value for related
problem and resolution events.

For example, SNMP trap 2 (linkDown) and trap 3 (linkUp) must
both contain the same AlertGroup value of Link Status.

The AlertGroup field for a TL-1 message will be set to the value of
the message's alarm type.

Appendix D. ObjectServer tables and data types 235

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

AlertKey varchar(255) Yes The descriptive key that indicates the managed object instance
referenced by the alert. For example, the disk partition indicated by
a file system full alert or the switch port indicated by a utilization
alert.

Probes that process SNMP traps should set the AlertKey field to
one of the following values (in order of preference):

v The SNMP instance of the managed object which is represented
by the alarm. This is normally obtained by extracting the
instance from the OID of one of the variable bindings of the
trap. Additionally, it might also be contained in a combination of
one or more of the trap's variable binding values. For example,
the first variable binding of a linkDown trap contains the ifIndex
value (interface number) of the interface which failed. The
AlertKey can be set with either of the following:

– @AlertKey = extract($OID1, “\.([0-9]+)$”)

– @AlertKey = $1

v A textual description of the instance derived from the trap name
or trap description. For example, a device with two power
supplies (A and B) might be able to send two separate specific
traps, without variable bindings, to indicate the failed status of
either power supply. The appropriate power supply instance
would need to be derived from the trap definitions of the MIB
and then encoded in the rules file:

switch($specific-trap)
{
case “1”:
@AlertKey = “A”
case “2”:
@AlertKey = “B”
default:
}

v A mixed combination of variable binding values and information
derived from the trap name or trap description. Any instance
information that is not available for the previous two values, but
that is required to ensure correct deduplication and GenericClear
compatibility, is suitable.

The Syslog Probe should set the AlertKey to a textual description
of the instance derived from the log message text. Ideally this is a
textual name of the same managed entity. For example:

Nov 20 13:12:57 device.customer.net
195.180.208.193 19986: 37w0d: %LINK-3-UPDOWN:
Interface FastEthernet0/13, changed state to down

In this example, the AlertKey would be set to FastEthernet0/13
using the following syntax:

@AlertKey = extract($Details, “Interface
(.*), changed”)

Typically the AlertKey field for a TL-1 message is set to the value
of the message's alarm location.

236 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Severity integer Yes Indicates the alert severity level, which indicates how the
perceived capability of the managed object has been affected. The
color of the alert in the event list is controlled by the severity
value:

0: Clear. The Clear severity level indicates that one or more
previously reported alarms has been cleared. The alarms have
either been cleared manually by a network operator, or
automatically by a process which has determined the fault
condition no longer exists. Automatic processes, for example the
GenericClear Automation process, typically clear all alarms for a
managed object (the AlertKey) that have the same Alarm Type
and/or probable cause (the Alert Group).

1: Indeterminate. The Indeterminate severity level indicates that the
severity level cannot be determined. Additionally, all problem
resolving alarms are initially defined as indeterminate until they
have been correlated with problem indicating alarms (for example
by the GenericClear Automation), when all correlated alarms are
set to Clear.

2: Warning. The Warning severity level indicates the detection of
potential or impending service affecting faults. If necessary, a
further investigation of the fault should be made to prevent it from
becoming more serious.

3: Minor. The Minor severity level indicates the existence of a
non-service affecting fault condition. Corrective action should be
taken to prevent it from becoming a more serious fault. This
severity level may be reported, for example, when the detected
alarm condition is not currently degrading the capacity of the
managed object.

4: Major. The Major severity level indicates that a service affecting
condition has developed and corrective action is urgently required.
This severity level may be reported, for example, when there is a
severe degradation in the capability of the managed object, and its
full capability must be restored.

5: Critical. The Critical severity level indicates that a service
affecting condition has occurred, and corrective action is
immediately required. This severity level may be reported, for
example, when a managed object is out of service, and its
capability must be restored.

Appendix D. ObjectServer tables and data types 237

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Summary varchar(255) Yes Contains text which describes the alarm condition and the affected
managed object instance.

v You must ensure that the information presented in the Summary
field is concise and sufficiently detailed.

v The Summary field must contain, in parenthesis, a description of
the managed object instance provided by the available alarm
data. For example, a linkDown trap from a Cisco device will
contain the ifDescr value in the 2nd variable binding. The text
summary of such an event would be similar to:

“Link Down (FastEthernet0/13)”

v For alarms that relate to thresholds containing the compared or
threshold values, you should select one of the following formats
based on the available data:

– No values provided:

“Link Utilization High (BRI2/0:1)”

– Compared value name provided:

“Link Utilization High: inOctets
Exceeded Threshold (BRI2/0:1)”

– Compared value name and value provided:

“Link Utilization High: inOctets, 7100,
Exceeded Threshold (BRI2/0:1)”

– Threshold name provided:

“Link Utilization High: inOctetsMax
Exceeded (BRI2/0:1)”

– Threshold Value provided:

“Link Utilization High: inOctetsMax, 7000,
Exceeded (BRI2/0:1)”

– Compared value and threshold value provided:

“Link Utilization High: 7100
Exceeded 7000 (BRI2/0:1)”

– Both names and values provided:

“Link Utilization High: inOctets, 7100,
Exceeded inOctetsMax,7000 (BRI2/0:1)”

StateChange time Yes An automatically-maintained ObjectServer timestamp of the last
insert or update of the alert from any source.

FirstOccurr
ence

time Yes The time in seconds (from midnight January 1, 1970) when this
alert was created or when polling started at the probe.

LastOccurr
ence

time Yes The time when this alert was last updated at the probe.

InternalLast time Yes The time when this alert was last updated at the ObjectServer.

Poll integer No The frequency of polling for this alert in seconds.

238 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Type integer No The type of alarm, where type refers to the problem or resolution
state of the Alarm. This field is important for the correct correlation
of events by the GenericClear Automation. The following values
are valid for the Type field:

0: Type not set

1: Problem

2: Resolution

3: Netcool/Visionary problem

4: Netcool/Visionary resolution

7: Netcool/ISMs new alarm

8: Netcool/ISMs old alarm

11: More Severe

12: Less Severe

13: Information

Some scenarios cannot be categorized as either a Problem or
Resolution. For example, events which are increasingly becoming
an issue but do not currently represent a failure, and events which
are becoming less of an issue but do not currently indicate the
failure has been completely resolved. In which case, the Type field
must be set to Problem, More Severe or Less Severe to maintain
compatibility with the GenericClear Automation.

For example, the following rule file logic is used for handling traps
associated with BGP Peer Connection Status:

switch ($bgpPeerState)
{
case "1": ### idle
@Severity = 4
@Type = 1
case "2": ### connect
@Severity = 2
@Type = 12
case "3": ### active
@Severity = 2
@Type = 12
case "4": ### opensent
@Severity = 2

@Type = 12
case "5": ### openconfirm
@Severity = 2
@Type = 12
case "6": ### established
@Severity = 1
@Type = 2
default:
@Severity = 2
@Type = 1
}

Appendix D. ObjectServer tables and data types 239

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Tally integer Yes Automatically-maintained count of the number of inserts and
updates of the alert from any source. This count is affected by
deduplication.

Class integer Yes The alert class used to identify the probe or vendor from which the
alert was generated. Controls the applicability of context-sensitive
event list tools.

Grade integer No Indicates the state of escalation for the alert:

0: Not Escalated

1: Escalated

Location varchar(64) No Indicates the physical location of the device, host, or service for
which the alert was generated.

OwnerUID integer Yes The user identifier of the user who is assigned to handle this alert.
The default is 65534, which is the identifier for the nobody user.

OwnerGID integer No The group identifier of the group that is assigned to handle this
alert.

The default is 0, which is the identifier for the public group.

Acknowled
ged

integer Yes Indicates whether the alert has been acknowledged:

0: No

1: Yes

Alerts can be acknowledged manually by a network operator or
automatically by a correlation or workflow process.

Flash integer No Enables the option to make the event list flash.

EventId varchar(255) No The event ID (for example, SNMPTRAP-link down). Multiple events
can have the same event ID.

The event ID is populated by the probe rules file and used by IBM
Tivoli Network Manager IP Edition.

ExpireTime integer Yes The number of seconds from the time this alert was last received
by the ObjectServer (LastOccurence) until it is cleared
automatically. Used by the Expire automation.

ProcessReq integer No Indicates whether the alert should be processed by IBM Tivoli
Network Manager IP Edition. This is populated by the probe rules
file and used by IBM Tivoli Network Manager IP Edition.

240 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Suppress
Escl

integer Yes Used to suppress or escalate the alert:

0: Normal

1: Escalated

2: Escalated-Level 2

3: Escalated-Level 3

4: Suppressed

5: Hidden

6: Maintenance

The suppression level is manually selected by operators from the
event list.

Customer varchar(64) No The name of the customer affected by this alert.

Service varchar(64) No The name of the service affected by this alert.

PhysicalSlot integer No The slot number indicated by the alert.

PhysicalPort integer No The port number indicated by the alert.

Physical
Card

varchar(64) No The card name or description indicated by the alert.

TaskList integer Yes Indicates whether a user has added the alert to the Task List:

0: No

1: Yes

Operators can add alerts to the Task List from the event list.

NmosSerial varchar(64) No The serial number of the event that is suppressing the current
event. Populated by IBM Tivoli Network Manager IP Edition.

NmosObj
Inst

integer No Populated by IBM Tivoli Network Manager IP Edition during alert
processing.

NmosCause
Type

integer No The alert state, populated by IBM Tivoli Network Manager IP
Edition as an integer value:

v 0: Unknown

v 1: Root cause

v 2: Symptom

Nmos
Domain
Name

varchar(64) No The name of the IBM Tivoli Network Manager IP Edition domain
that is managing the event.

By default, this column is populated only for events that are
generated by IBM Tivoli Network Manager IP Edition polls. To
populate this column for other event sources such as probes, you
must modify the rules files.

Appendix D. ObjectServer tables and data types 241

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Nmos
EntityId

integer No A unique numerical ID that identifies the IBM Tivoli Network
Manager IP Edition topology entity with which the event is
associated.

This column is similar to the NmosObjInst column, but is more
granular. For example, the NmosEntityId value can represent the
ID of an interface within a device.

Nmos
Managed
Status

integer No The managed status of the network entity for which the event was
raised. Can apply to events from IBM Tivoli Network Manager IP
Edition and from any probe.

You can use this column to filter out events from interfaces that are
not considered relevant.

NmosEvent
Map

varchar(64) No Contains the required IBM Tivoli Network Manager IP Edition
V3.9 or later, eventMap name and optional precedence for the
event, which indicates how IBM Tivoli Network Manager IP
Edition should process the event.

The optional precedence number can be concatenated to the end of
the value, following a period (.). If the precedence is not supplied,
it is set to 0. The following examples show the configuration for an
event map with an explicit event precedence of 900, and another
where the precedence defaults to 0:

v ItnmLinkdownIfIndex.900

v PrecisionMonitorEvent

LocalNode
Alias

varchar(64) Yes The alias of the network entity indicated by the alert. For network
devices or hosts, this is the logical (layer-3) address of the entity, or
another logical address that enables direct communication with the
device. For use in managed object instance identification.

LocalPriObj varchar(255) No The primary object referenced by the alert. For use in managed
object instance identification.

LocalSecObj varchar(255) No The secondary object referenced by the alert. For use in managed
object instance identification.

LocalRoot
Obj

varchar(255) Yes An object that is equivalent to the primary object referenced in the
alarm. For use in managed object instance identification.

Remote
Node
Alias

varchar(64) Yes The network address of the remote network entity. For use in
managed object instance identification.

RemotePri
Obj

varchar(255) No The primary object of a remote network entity referenced by an
alarm. For use in managed object instance identification.

RemoteSec
Obj

varchar(255) No The secondary object of a remote network entity referenced by an
alarm. For use in managed object instance identification.

Remote
RootObj

varchar(255) Yes An object that is equivalent to the remote entity's primary object
referenced in the alarm. For use in managed object instance
identification.

242 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

X733
EventType

integer No Indicates the alert type:

0: Not defined

1: Communications

2: Quality of Service

3: Processing error

4: Equipment

5: Environmental

6: Integrity violation

7: Operational violation

8: Physical violation

9: Security service violation

10: Time domain violation

X733
Probable
Cause

integer No Indicates the probable cause of the alert.

X733
Specific
Prob

varchar(64) No Identifies additional information for the probable cause of the alert.
Used by probe rules files to specify a set of identifiers for use in
managed object instance identification.

X733
CorrNotif

varchar(255) No A listing of all notifications with which this notification is
correlated.

ServerName varchar(64) Yes The name of the originating ObjectServer. Used by gateways to
control propagation of alerts between ObjectServers.

ServerSerial integer Yes The serial number of the alert on the originating ObjectServer (if it
did not originate on this ObjectServer). Used by gateways to
control the propagation of alerts between ObjectServers.

URL varchar(1024) No Optional URL which provides a link to additional information in
the vendor's device or ENMS.

Appendix D. ObjectServer tables and data types 243

Table 60. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Extended
Attr

varchar(4096) No Holds name-value pairs (of Tivoli Enterprise Console® extended
attributes) or any other additional information for which no
dedicated column exists in the alerts.status table.

Use this column only through the nvp_get, nvp_set, and
nvp_exists SQL functions.

An example of a name-value string is:

Region="EMEA";host="sf01392w";
Error="errno=32: ""Broken pipe"""

In this example, the Region attribute has a value of EMEA, the host
attribute has a value of sf01392w, and the Error attribute has a
value of errno=32: "Broken pipe".

Notice that quotation marks are escaped by doubling them, as
shown with the Error attribute value.

In name-value pairs, the value is always enclosed in quotation
marks (" ") and embedded quotation marks are escaped by
doubling them. The separator between name-value pairs is a
semicolon (;). No whitespace is allowed around the equal sign (=)
or semicolon.
Note: The column can hold only 4096 bytes, so there will be fewer
than 4096 characters if multi-byte characters are used.

OldRow integer No Maintains the local state of the row in each ObjectServer during
resynchronization in the failover pair. This column must not be
added to the gateway mapping files.

The value of OldRow is changed to 1 in the destination
ObjectServer for the duration of resynchronization if the
Gate.ResyncType property of the gateway is set to Minimal.

The default is 0.

ProbeSub
SecondId

integer No For those alerts that a probe sends within the same one-second
interval, and which therefore have the same LastOccurrence value,
an incremental value, starting at 1, is added to the
ProbeSubSecondId field to differentiate the LastOccurrence time.
The default is 0.

MasterSerial integer No Identifies the master ObjectServer if this alert is being processed in
a desktop ObjectServer environment.

This column is added when you run the database initialization
utility nco_dbinit with the -desktopserver option.
Note: MasterSerial must be the last column in the alerts.status
table if you are using a desktop ObjectServer environment.

BSM_
Identity

varchar(1024) No The unique identifier of the resource from where the event
originates, and is used to correlate the event to that resource in
IBM Tivoli Business Service Manager (TBSM).

244 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

alerts.details table
The alerts.details table contains the detail attributes of the alerts in the system.

The following table describes the columns in the alerts.details table.

Table 61. Columns in the alerts.details table

Column name Data type Description

KeyField varchar(255) Internal sequencing string for uniqueness.

The Keyfield value is composed of an Identifer value plus four #
plus a sequence number starting at a count of 1; for example:

Identifier####1

Where Identifier is a data type of varchar(255), which is used to
relate details to entries in the alerts.status table.

If the Identifier value is over a certain length, there is a possibility
that the Keyfield value could exceed its defined 255 limit,
resulting in truncation of the sequence number. Keyfield values
could therefore no longer be unique, and the unintended
duplication could cause inserts into the alerts.details table to fail.
Tip: To prevent an overflow in KeyField (and ensure uniqueness),
the length of the Identifier value must be sufficiently less than 255
to allow the four # and a sequence number (of one or more digits)
to be appended.

Identifier varchar(255) Identifier to relate details to entries in the alerts.status table.

The Identifier is used to compute the Keyfield value, and is
required to be less than a certain length to ensure that each
computed Keyfield value remains unique. For guidelines on the
maximum length of the Identifier value, see the tip in the
preceding KeyField row.

AttrVal integer Boolean; when false (0), just the Detail column is valid. Otherwise,
the Name and Detail columns are both valid.

Sequence integer Sequence number, used for ordering entries in the event list Event
Information window.

Name varchar(255) Name of attribute stored in the Detail column.

Detail varchar(255) Attribute value.

alerts.journal table
The alerts.journal table provides a history of work performed on alerts.

The following table describes the columns in the alerts.journal table.

Table 62. Columns in the alerts.journal table

Column name Data type Description

KeyField varchar(255) Primary key for table.

Serial integer Serial number of alert that this journal entry is related to.

UID integer User identifier of user who made this entry.

Chrono time Time and date that this entry was made.

Text1 varchar(255) First block of text for journal entry.

Appendix D. ObjectServer tables and data types 245

Table 62. Columns in the alerts.journal table (continued)

Column name Data type Description

Text2 varchar(255) Second block of text for journal entry.

Text3 varchar(255) Third block of text for journal entry.

Text4 varchar(255) Fourth block of text for journal entry.

Text5 varchar(255) Fifth block of text for journal entry.

Text6 varchar(255) Sixth block of text for journal entry.

Text7 varchar(255) Seventh block of text for journal entry.

Text8 varchar(255) Eighth block of text for journal entry.

Text9 varchar(255) Ninth block of text for journal entry.

Text10 varchar(255) Tenth block of text for journal entry.

Text11 varchar(255) Eleventh block of text for journal entry.

Text12 varchar(255) Twelfth block of text for journal entry.

Text13 varchar(255) Thirteenth block of text for journal entry.

Text14 varchar(255) Fourteenth block of text for journal entry.

Text15 varchar(255) Fifteenth block of text for journal entry.

Text16 varchar(255) Sixteenth block of text for journal entry.

service.status table
The service.status table is used to control the additional features required to
support IBM Tivoli Composite Application Manager for Internet Service
Monitoring.

The following table describes the columns in the service.status table.

Table 63. Columns in the service.status table

Column name Data type Description

Name varchar(255) Name of the service.

CurrentState integer Indicates the state of the service:

0: Good

1: Bad

2: Marginal

3: Unknown

StateChange time Indicates the last time the service state changed.

LastGoodAt time Indicates the last time the service was Good (0).

LastBadAt time Indicates the last time the service was Bad (1).

LastMarginalAt time Indicates the last time the service was Marginal (2).

LastReportAt time Time of the last service status report.

246 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

registry.probes table
The registry.probes table is used to track dynamic runtime information about
probes. When a probe connects to the ObjectServer, it registers information about
itself in the registry.probes table. The probe controls what data is entered into the
table.

If you have two or more instances of a probe running on one computer, and each
instance has the same name, only one instance will be registered in the
registry.probes table. To enable registration of all the instances of a probe running
on the same computer, you must use unique values for each probe's Name property.

The registry.probes table is a virtual table. Because probes update the table when
they connect to the ObjectServer, the data in the table does not need to persist
when the ObjectServer shuts down.

The following table describes the columns in the registry.probes table.

Table 64. Columns in the registry.probes table

Column name Data type Description

Name varchar(128) The value of the Name property in the probe's properties file.

Hostname varchar(64) The fully qualified domain name (FQDN) of the computer that the
probe is running on.

PID integer The probe's current process ID (PID).

Status integer Indicates the status of the probe:

0: The probe has shut down.

1: The probe is running.

HTTP_port integer The port number on which the HTTP interface of the probe is
listening. The probe properties NHttpd.EnableHTTP and
NHttpd.ListeningPort must be enabled for this port to be active.
When the port is not active, the default value of this field is 0.

HTTPS_port integer The port number on which the HTTPS interface of the probe is
listening. The probe properties NHttpd.SSLEnable and
NHttpd.SSLListeningPort must be enabled for this port to be
active. When the port is not active, the default value of this field
is 0.

StartTime time The time at which the probe started up. This information enables
you to determine whether the probe is starting up or is
reconnecting.

ProbeType varchar(128) A string representation of the type of probe connecting to the
ObjectServer, for example, “simnet” or “tivoli_eif”.

Appendix D. ObjectServer tables and data types 247

Table 64. Columns in the registry.probes table (continued)

Column name Data type Description

ConnectionID integer The connection ID assigned to the probe when it connects to the
ObjectServer. This corresponds to the connection ID stored in the
catalog.connections table. This column is populated by the
registry_new_probe ObjectServer trigger.
Note: When a probe is connected to the ObjectServer through a
proxy server, the connection ID of the probe can change over time
and it might therefore be registered incorrectly. This is because the
proxy server optimizes its ObjectServer connections and
dynamically shuffles probe connections around. However, the
connection ID stored in the registry.probes table remains the same.
It is not updated when a probe is moved to another connection on
the same proxy server.

A workaround for this problem is to not use a proxy server in
multitiered deployments.

LastUpdate time The time stamp of the most recent update to the registry.probes
table. This column is populated by the registry_new_probe
ObjectServer trigger.

ObjectServer data types
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column.

For example, the plus operator (+) adds integer values or concatenates string
values, but does not act on Boolean values. The data types supported by the
ObjectServer are listed in the following table:

Table 65. ObjectServer data types

SQL type Description Default value ObjectServer ID for data type

INTEGER 32-bit signed integer. 0 0

INCR 32-bit unsigned auto-incrementing integer.
Applies to table columns only, and can
only be updated by the system.

0 5

UNSIGNED 32-bit unsigned integer. 0 12

BOOLEAN TRUE or FALSE. FALSE 13

REAL 64-bit signed floating point number. 0.0 14

TIME Time, stored as the number of seconds
since midnight January 1, 1970. This is the
Coordinated Universal Time (UTC)
international time standard.

Thu Jan 1
01:00:00 1970

1

CHAR(integer) Fixed size character string, integer
characters long (8192 Bytes is the
maximum).

The char type is identical in operation to
varchar, but performance is better for
mass updates that change the length of
the string.

'' 10

248 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 65. ObjectServer data types (continued)

SQL type Description Default value ObjectServer ID for data type

VARCHAR(integer) Variable size character string, up to integer
characters long (8192 Bytes is the
maximum).

The varchar type uses less storage space
than the char type and the performance is
better for deduplication, scanning, insert,
and delete operations.

'' 2

INTEGER64 64 bit signed integer. 0 16

UNSIGNED64 64 bit unsigned integer. 0 17

Note: You can display only columns of type CHAR, VARCHAR, INCR, INTEGER,
and TIME in the event list. Do not add columns of any other type to the
alerts.status table.

Appendix D. ObjectServer tables and data types 249

250 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1994, 2013 251

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1
294 Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

252 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Portions of this product include software developed by Daniel Veillard.
v libxml2-2.7.8

The libxml2-2.7.8 software is distributed according to the following license
agreement:
© Copyright 1998-2003 Daniel Veillard.
All Rights Reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Daniel Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
AIX, IBM, the IBM logo, ibm.com®, Informix, Netcool, System z, Tivoli, and Tivoli
Enterprise Console are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Notices 253

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

254 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Index

Special characters
$ symbol

in probe rules files 20
@ symbol

in gateway mappings 181
in probe rules files 9, 20

@Identifier 9, 10
@Tally 10
% symbol

in probe rules files 22

A
accessibility viii
ADD ROUTE gateway command 181,

195
alerts.details table 245
alerts.journal table 245
alerts.status table 233
anomalous event rates

configuring 68
API probes 4
arch

operating system directory viii
arithmetic functions

in probe rules files 40
arithmetic operators

in probe rules files 33
atoms

description 223
audience v

B
backslash sequences

regular expressions 230
bidirectional gateways 160, 161
bit manipulation operators

in probe rules files 34
BOOLEAN data type 248
bracket expressions

regular expressions 228

C
CHAR data type 248
command line options

gateways 183
probes 113

comparison operators
in probe rules files 35

configuration commands
gateways 196

configuring
anomalous event rates 68
event flood 68
probe statistics 80

configuring gateways
configuration files 167

configuring gateways (continued)
gateways 167
isql 186
nco_sql 186

conventions, typeface viii
CORBA probes 4
correlation of events 10
COUNTERPART attribute in

gateways 162
CREATE FILTER gateway

command 182, 194
CREATE MAPPING gateway

command 192

D
data types 248
database probes 3
date functions

in probe rules files 41
debugging

probes 14, 210
rules files 59

deduplication 10, 45
deleting

elements in probe rules files 36
details function

in probe rules files 45
device probes 3
DROP FILTER gateway command 194
DROP MAPPING gateway

command 193
DUMP CONFIG gateway command 196

E
editing

probe properties 85
education

see Tivoli technical training viii
elements

in probe rules files 20
encrypting

passwords for the ObjectServer 15,
165

Environment variables
NCHOME 86, 201
OMNIHOME 86, 201

environment variables, notation viii
error messages

gateways 215
probes 203

event flood
configuring 68

exists function
in probe rules files 35

F
fields

Identifier 10
in probe rules files 20
Tally 10

filters
commands 194
in gateways 182

flood configuration rules file 71
flood rules file 74
flood.config.rules 71
flood.rules 74
functions

rules files 30

G
gateway commands 186
gateway configuration

.conf 179
map definition file 167
properties file 167
startup command file 167
table replication definition file 167

gateway interactive command line tool
nco_g_icmd 179

gateways
ADD ROUTE command 195
bidirectional 160, 161
command line options 183
configuration commands 196
COUNTERPART attribute 162
CREATE FILTER command 194
CREATE MAPPING command 192
DROP FILTER command 194
DROP MAPPING command 193
DUMP CONFIG command 196
error messages 215
filter commands 194
filter description 182
general commands 196
LOAD CONFIG command 196
LOAD FILTER command 194
log files 202
mapping commands 192
mapping description 181
overview 159
reader commands 188
reader description 163, 180
reader/writer modules 163
REMOVE ROUTE command 195
route commands 195
route description 164, 181
SAVE CONFIG command 196
secure mode 165
SET CONNECTIONS command 197
SET DEBUG MODE command 198
SHOW MAPPING ATTRIBUTES

command 193
SHOW MAPPING command 193

© Copyright IBM Corp. 1994, 2013 255

gateways (continued)
SHOW READERS command 189
SHOW ROUTES command 195
SHOW SYSTEM command 197
SHOW WRITER ATTRIBUTES

command 191
SHOW WRITER TYPES

command 191
SHOW WRITERS command 190
SHUTDOWN command 196
START READER command 188
START WRITER command 190
STOP READER command 189
STOP WRITER command 190
store-and-forward mode 164
TRANSFER command 198
types 160
unidirectional 160, 162
writer commands 189
writer description 180

Gateways
gateway command-line options 175
gateway commands 174, 179, 185
gateway properties 175
map 168
map definition file 168
mapping 168
running gateways 201
startup command file 174

Generic probe 14
genevent 47, 49

I
Identifier field 10
IDUC 188
IF statements in rules files 28
include files

in probe rules files 30
INCR data type 248
INTEGER data type 248
INTEGER64 data type 248

L
LOAD CONFIG gateway command 196
LOAD FILTER gateway command 194
log file probes 3
log function

in probe rules files 46
logical operators

in probe rules files 35
lookup tables 43

in probe rules files 43

M
manuals vi
mappings

commands 192
in gateways 181

math functions
in probe rules files 40

math operators
in probe rules files 33

messagelevel command line option 59

messagelog command line option 59
metacharacters

regular expressions 225
minimal quantifiers

regular expressions 227
miscellaneous probes 4
multicultural constructs

regular expressions 229
multithreaded processing 52

N
nco_aes_crypt 15
nco_g_crypt 15, 165
nco_objserv 86
ncoadmin user group 183
NETCOOL regular expression

library 223
non-greedy quantifiers

regular expressions 227

O
ObjectServer

data types 248
ObjectServer tables

alerts.details 245
alerts.journal 245
alerts.status 233
registry.probes 247
service.status 246

ON INSERT ONLY flag in gateways 181
online publications vi
operating system directory

arch viii
operators

rules files 30
ordering publications vi

P
password encryption 15, 165
peer-to-peer failover mode

probes 16
Ping probe 6
probe rules language

reserved words 56
probe self monitoring

resources 79
probe statistics

configuring 80
probes

anomalous event rates 68
API 4
arithmetic functions in rules files 40
arithmetic operators in rules files 33
bit manipulation operators in rules

files 34
command line options 113
comparison operators in rules

files 35
components 5
CORBA 4
customizations 67
database 3
date functions in rules files 41

probes (continued)
debugging 14, 210
debugging rules files 59
deduplication in rules files 45
deleting elements in rules files 36
details function in rules files 45
device 3
editing properties 85
elements in rules files 20
error messages 203
event flood detection 68
executable file 5
fields in rules files 20
Identifier field 10
IF statements in rules files 28
include files in rules files 30
log file 3
log function in rules files 46
logical operators in rules files 35
lookup tables 43
lookup tables in rules files 43
math functions in rules files 40
math operators in rules files 33
metric data collection 80
miscellaneous 4
operation 11
overview 1
peer-to-peer failover mode 16
properties 6
properties file 5
properties in rules files 22
raw capture 14
registration 2
rules file 7
rules file processing 20
search and replace function in rules

files 53
secure mode 15
self monitoring 76, 80
self monitoring setup 77
service function in rules files 54
setlog function in rules files 46
store and forward 11
string functions in rules files 36
string operators in rules files 33
SWITCH statement in rules files 29
temporary elements in rules files 21
testing rules files 58
time functions in rules files 41
troubleshooting 210
types 2
update function in rules files 45
using a specific probe 8

properties
in probe rules files 22
probes 113

publications vi

R
raw capture mode in probes 14
readers

commands 188
in gateways 163, 180

REAL data type 248
RegexpLibrary property 223
registertarget 47

256 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

registry.probes 2
registry.probes table 247
regular expressions

atoms 223
backslash sequences 230
bracket expressions 228
metacharacters 225
minimal quantifiers 227
multicultural constructs 229
NETCOOL library 223
non-greedy quantifiers 227
overview 223
RegexpLibrary property 223
TRE library 225

reload rules file
nco_probereloadrules 99

remote administration of probes
nco_http 95

remote property update
nco_setprobeprop 100

remotely generate events
nco_probeeventfactory 101

REMOVE ROUTE gateway
command 195

reserved words
probe rules language 56

routes
commands 195
in gateways 164, 181

rules file 60
rules file processing 20

bit manipulation operators 34
comparison operators 35
date functions 41
deduplication 10
deleting elements 36
details function 45
exists function 35
IF statements 28
log function 46
logical operators 35
lookup tables 43
math functions 40
math operators 33
rules file examples 63
search and replace function 53
setlog function 46, 54
string functions 36
string operators 33
SWITCH statement 29
time functions 41
update function 45

rules files 59
functions 30
operators 30

Running probes
Running probes as SUID root 87
SETUID 87

S
SAVE CONFIG gateway command 196
search and replace function

in probe rules files 53
secure mode

for gateways 165
for probes 15

self monitoring
probes 76

service function
in probe rules files 54

service.status table 246
SET CONNECTIONS gateway

command 197
SET DEBUG MODE gateway

command 198
setdefaulttarget 47
setlog function

in probe rules files 46
settarget 47
SHORT data type 248
SHOW MAPPING ATTRIBUTES gateway

command 193
SHOW MAPPINGS gateway

command 193
SHOW READERS gateway

command 189
SHOW ROUTES gateway command 195
SHOW SYSTEM gateway command 197
SHOW WRITER ATTRIBUTES gateway

command 191
SHOW WRITER TYPES gateway

command 191
SHOW WRITERS gateway

command 190
SHUTDOWN gateway command 196
SQL interactive interface

isql 179, 185
nco_sql 179, 185

START READER gateway
command 180, 188

START WRITER gateway command 180,
190

STOP READER gateway command 189
STOP WRITER gateway command 180,

190
store-and-forward mode

in gateways 164
in probes 11

string functions
in probe rules files 36

string operators
in probe rules files 33

support information viii
SWITCH statement in rules files 29

T
Tally field 10
temporary elements

in probe rules files 21
testing

rules files 58
time functions

in probe rules files 41
Tivoli software information center vi
Tivoli technical training viii
training, Tivoli technical viii
TRANSFER gateway command 198
TRE regular expression library 225
troubleshooting

gateways 215
probes 210

typeface conventions viii

U
unidirectional gateways 160
UNSIGNED data type 248
UNSIGNED64 data type 248
update function

in probe rules files 45
UTC data type 248

V
VARCHAR data type 248
variables, notation for viii

W
writers

commands 189
in gateways 180

Index 257

258 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

����

Printed in the Republic of Ireland

SC14-7530-02

	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication

	Chapter 1. About probes
	Probe registration
	Types of probes
	Device probes
	Log file probes
	Database probes
	API probes
	CORBA probes
	Miscellaneous probes

	Probe components
	Executable file
	Properties file
	Probe property types
	Probe property versus probe command-line option usage

	Rules file
	Naming conventions for probe component files

	Probe architecture
	How unique identifiers are constructed for events
	Modes of operation of probes
	Store-and-forward mode for probes
	Raw capture mode for probes
	Secure mode for probes
	Peer-to-peer failover mode for probes

	Chapter 2. Probe rules file syntax
	Rules file development guidelines
	Elements, fields, properties, and arrays in rules files
	Assigning values to ObjectServer fields
	Assigning temporary elements in rules files
	Assigning property values to fields
	Assigning values to properties
	Changing the value of the RawCapture property in the rules file

	Using arrays

	Control statements in rules files
	FOREACH statement
	Examples of the looping function

	IF statement
	SWITCH statement
	BREAK statement

	Embedding multiple rules files in a rules file
	Rules file functions and operators
	Math and string operators
	Bit manipulation operators
	Comparison operators
	Logical operators
	Existence function
	Elements and event functions
	String functions
	Math functions
	Date and time functions
	Host and process utility functions
	Lookup table operations
	Defining lookup tables in the rules file
	Defining lookup tables in a separate file

	Update on deduplication function
	Details function
	Message logging functions
	Log function
	Setlog function
	Example: Message logging

	Sending alerts to alternative ObjectServers and tables
	Registering target ObjectServers and setting targets for alerts
	Sending alerts to multiple ObjectServers and tables
	Multithreaded processing of alert data

	Search and replace function
	Service function
	Monitoring probe loads
	Reserved words in the probe rules language

	Testing rules files
	Debugging rules files
	Rereading the rules file
	Enabling caching of probe rules files
	Rules file examples

	Chapter 3. Probe rules file customizations
	Detecting event floods and anomalous event rates
	Configuring probes to detect event floods and anomalous event rates
	Protecting the ObjectServer against event floods
	Flood configuration rules file
	Flood rules file

	Enabling self monitoring of probes
	Configuration setup for self monitoring of probes
	Tivoli Netcool/OMNIbus configuration files for the self monitoring of probes
	Configuring probes for self monitoring

	Chapter 4. Running probes
	Use of OMNIHOME and NCHOME environment variables
	Running probes on UNIX
	Running probes as SUID root

	Running probes on Windows
	Running a probe as a console application
	Running a probe as a service

	Chapter 5. Remotely administering probes
	Enabling remote administration of probes
	Configuring authentication between remote systems and probes
	Configuring SSL connections between remote systems and probes
	Sending remote requests to probes (nco_http)
	Reloading rules files (nco_probereloadrules)
	Sending property updates to probes (nco_setprobeprop)
	Generating events with probes (nco_probeeventfactory)
	About the common URI
	Get the current state of a probe
	Reload the rules file
	List the probe properties
	Create a synthetic event
	Set a probe property
	Acknowledge event and event_payload
	Set PATCH or POST requests as blocking or nonblocking

	Chapter 6. Common probe properties and command-line options
	Chapter 7. Netcool MIB Manager
	Starting MIB Manager
	Using Netcool MIB Manager
	The MIB Modules view
	The OID Tree view
	Importing MIB data
	Exporting MIB data
	Editing SNMP traps
	Generating SNMP traps

	Using MIB Manager devices
	Creating a new device
	Updating a device
	Deleting a device

	Configuring global preferences
	Setting directory preferences
	Setting export preferences
	Setting general preferences
	Setting logging preferences
	Setting the logging level

	Setting search preferences

	MIB Manager command-line options
	About SNMP
	MIB concepts and design
	MIB object types
	Valid MIB object formats

	Chapter 8. About gateways
	Types of gateways
	Unidirectional ObjectServer gateways
	Bidirectional ObjectServer gateways
	Database, helpdesk, and other gateways
	Gateway components
	Unidirectional gateways
	Bidirectional gateways
	Reader component
	Writer modules
	Routes
	Alert updates from the helpdesk

	Store-and-forward mode for gateways
	Secure mode for gateways
	Gateway writers and failback

	Chapter 9. Configuring gateways
	Using multiple configuration files
	Map definition file
	Table replication definition file
	Startup command file
	Common gateway properties and command-line options
	Issuing commands to running gateways

	Using single configuration files
	Reader configuration
	Writer configuration
	Route configuration
	Mapping configuration
	Filter configuration
	Common gateway command-line options
	Configuring running gateways
	Loading and saving configurations

	Gateway commands
	Reader commands
	Writer commands
	Mapping commands
	Filter commands
	Route commands
	Configuration commands
	General commands

	Creating conversion tables

	Chapter 10. Running gateways
	Use of OMNIHOME and NCHOME environment variables
	Running gateways
	Troubleshooting gateway problems

	Appendix A. Probe error messages and troubleshooting techniques
	Generic error messages
	Fatal-level messages
	Error-level messages
	Warning-level messages
	Information-level messages
	Debug-level messages

	ProbeWatch and TSMWatch messages
	Troubleshooting probes
	Common problem causes
	What to do if
	The probe does not start
	The probe is not sending alerts to the ObjectServer
	The probe is losing events
	The probe is consuming too much CPU time
	The event list is not being populated properly

	Appendix B. Common gateway error messages
	Appendix C. Regular expressions
	NETCOOL regular expression library
	TRE regular expression library
	Metacharacters
	Minimal or non-greedy quantifiers
	Bracket expressions
	Constructs for multicultural support
	Backslash sequences

	Appendix D. ObjectServer tables and data types
	alerts.status table
	alerts.details table
	alerts.journal table
	service.status table
	registry.probes table
	ObjectServer data types

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

